留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种肾移植的亚临床研究进展

陈羽翔, 李卓骋, 李涛, 等. 异种肾移植的亚临床研究进展[J]. 器官移植, 2024, 15(1): 10-18. doi: 10.3969/j.issn.1674-7445.2023256
引用本文: 陈羽翔, 李卓骋, 李涛, 等. 异种肾移植的亚临床研究进展[J]. 器官移植, 2024, 15(1): 10-18. doi: 10.3969/j.issn.1674-7445.2023256
Chen Yuxiang, Li Zhuocheng, Li Tao, et al. Progress in subclinical research of kidney xenotransplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 10-18. doi: 10.3969/j.issn.1674-7445.2023256
Citation: Chen Yuxiang, Li Zhuocheng, Li Tao, et al. Progress in subclinical research of kidney xenotransplantation[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 10-18. doi: 10.3969/j.issn.1674-7445.2023256

异种肾移植的亚临床研究进展

doi: 10.3969/j.issn.1674-7445.2023256
基金项目: 国家自然科学基金(82260154);海南省重大科技项目(ZDKJ2019009);海南省自然科学基金(820RC766、821QN413、821QN409);海南省临床医学中心建设项目;海南省研究生创新科研课题(Qhys2022-227);海南医学院研究生创新科研A类课题(HYYB2022A07)
详细信息
    作者简介:
    通讯作者:

    蒋鸿涛(ORCID 0000-0001-9716-3233),Email:jht20032003@163.com

  • 中图分类号: R617, Q78

Progress in subclinical research of kidney xenotransplantation

More Information
  • 摘要: 异种移植是目前解决临床器官来源短缺的有效途径之一。随着基因编辑技术及免疫抑制方案不断发展,猪-非人灵长类动物异种肾移植相关研究取得了显著进展,为开启异种肾移植临床应用创造了良好条件。鉴于人与非人灵长类动物实质性差异,同时为了满足现阶段的伦理学要求,猪-人异种肾移植的亚临床研究非常必要。近年来,已有关于基因修饰猪-脑死亡受者异种肾移植的亚临床研究,表明异种肾移植已经进入向临床发展的过渡阶段。然而,供受体选择及免疫抑制应用方案尚未统一,亟需在亚临床研究中进一步明确。本文就异种肾移植亚临床研究中供受体选择、免疫抑制方案、移植术后监测管理等方面的现状和当前面临的主要问题进行综述,以期推动异种肾移植向临床转化。

     

  • [1] ZHOU Q, LI T, WANG K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 2022, 13: 928173. DOI: 10.3389/fimmu.2022.928173.
    [2] 徐小松. ABO血型不相容肾移植治疗终末期肾病的关键临床问题探讨[J]. 重庆医学, 2023, 52(18): 2721-2725,2740. DOI: 10.3969/j.issn.1671-8348.2023.18.001.

    XU XS. The key clinical issues of ABO blood group system incompatible kidney transplantation in the treatment of end stage renal disease[J]. Chongqing Med, 2023, 52(18): 2721-2725,2740. DOI: 10.3969/j.issn.1671-8348.2023.18.001.
    [3] ANAND RP, LAYER JV, HEJA D, et al. Design and testing of a humanized porcine donor for xenotransplantation[J]. Nature, 2023, 622(7982): 393-401. DOI: 10.1038/s41586-023-06594-4.
    [4] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1889-1898. DOI: 10.1056/NEJMoa2120238.
    [5] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [6] 高菲, 王煜, 杜嘉祥, 等. 遗传修饰猪模型在生物医学及农业领域研究进展及应用[J]. 遗传, 2023, 45(1): 6-28. DOI: 10.16288/j.yczz.22-313.

    GAO F, WANG Y, DU JX, et al. Advances and applications of genetically modified pig models in biomedical and agricultural field[J]. Hereditas, 2023, 45(1): 6-28. DOI: 10.16288/j.yczz.22-313.
    [7] 周小青, 刘玉, 唐成程, 等. 敲除GGTA1同时表达人白细胞抗原G5的基因修饰猪的构建[J]. 生物工程学报, 2022, 38(3): 1096-1111. DOI: 10.13345/j.cjb.210655.

    ZHOU XQ, LIU Y, TANG CC, et al. Generation of genetically modified pigs devoid of GGTA1 and expressing the human leukocyte antigen-G5[J]. Chin J Biotechnol, 2022, 38(3): 1096-1111. DOI: 10.13345/j.cjb.210655.
    [8] TECTOR AJ, MOSSER M, TECTOR M, et al. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation[J]. Front Immunol, 2020, 11: 622. DOI: 10.3389/fimmu.2020.00622.
    [9] COOPER DKC, HARA H, IWASE H, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation[J]. Xenotransplantation, 2019, 26(4): e12516. DOI: 10.1111/xen.12516.
    [10] NAGANO F, MIZUNO T, MIZUMOTO S, et al. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones[J]. Eur J Pharmacol, 2018, 826: 48-55. DOI: 10.1016/j.ejphar.2018.02.043.
    [11] ZHANG G, HARA H, YAMAMOTO T, et al. Serum amyloid a as an indicator of impending xenograft failure: experimental studies[J]. Int J Surg, 2018, 60: 283-290. DOI: 10.1016/j.ijsu.2018.11.027.
    [12] WATANABE H, ARIYOSHI Y, POMPOSELLI T, et al. Intra-bone bone marrow transplantation from hCD47 transgenic pigs to baboons prolongs chimerism to >60 days and promotes increased porcine lung transplant survival[J]. Xenotransplantation, 2020, 27(1): e12552. DOI: 10.1111/xen.12552.
    [13] CIMENO A, KURAVI K, SORRELLS L, et al. hEPCR. hTBM. hCD47. hHO-1 with donor clodronate and DDAVP treatment improves perfusion and function of GalTKO. hCD46 porcine livers perfused with human blood[J]. Xenotransplantation, 2022, 29(2): e12731. DOI: 10.1111/xen.12731.
    [14] HINRICHS A, RIEDEL EO, KLYMIUK N, et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies[J]. Xenotransplantation, 2021, 28(2): e12664. DOI: 10.1111/xen.12664.
    [15] MOHIUDDIN MM. Pig-to-primate organ transplants require genetic modifications of donor[J]. Nature, 2023, 622(7982): 244-245. DOI: 10.1038/d41586-023-02817-w.
    [16] KOZLOV M. Monkey survives for two years after gene-edited pig-kidney transplant[J]. Nature, 2023, 622(7983): 437-438. DOI: 10.1038/d41586-023-03176-2.
    [17] SIEMS C, HUDDLESTON S, JOHN R. A brief history of xenotransplantation[J]. Ann Thorac Surg, 2022, 113(3): 706-710. DOI: 10.1016/j.athoracsur.2022.01.005.
    [18] GANCHIKU Y, RIELLA LV. Pig-to-human kidney transplantation using brain-dead donors as recipients: one giant leap, or only one small step for transplantkind?[J]. Xenotransplantation, 2022, 29(3): e12748. DOI: 10.1111/xen.12748.
    [19] 中华医学会器官移植学分会异种移植学组. 异种移植临床研究指导意见(2018建议版)[J]. 器官移植, 2018, 9(6): 405-408. DOI: 10.3969/j.issn.1674-7445.2018.06.001.

    Xenotransplantation Group of Organ Transplantation Credit Association of Chinese Medical Association. Guidelines for clinical research of xenotransplantation (2018 recommended version) [J]. Organ Transplant, 2018, 9(6): 405408. DOI: 10.3969/j.issn.1674-7445.2018.06.001.
    [20] YU XH, DENG WY, JIANG HT, et al. Kidney xenotransplantation: recent progress in preclinical research[J]. Clin Chim Acta, 2021, 514: 15-23. DOI: 10.1016/j.cca.2020.11.028.
    [21] LADOWSKI JM, HARA H, COOPER DKC. The role of SLAs in xenotransplantation[J]. Transplantation, 2021, 105(2): 300-307. DOI: 10.1097/TP.0000000000003303.
    [22] HARA H, NGUYEN H, WANG ZY, et al. Evidence that sensitization to triple-knockout pig cells will not be detrimental to subsequent allotransplantation[J]. Xenotransplantation, 2021, 28(4): e12701. DOI: 10.1111/xen.12701.
    [23] MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO. hCD46. hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7: 11138. DOI: 10.1038/ncomms11138.
    [24] ADAMS AB, KIM SC, MARTENS GR, et al. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival[J]. Ann Surg, 2018, 268(4): 564-573. DOI: 10.1097/SLA.000000000000 2977.
    [25] ANWAR IJ, DELAURA I, LADOWSKI J, et al. Complement-targeted therapies in kidney transplantation-insights from preclinical studies[J]. Front Immunol, 2022, 13: 984090. DOI: 10.3389/fimmu.2022.984090.
    [26] VIGLIETTI D, GOSSET C, LOUPY A, et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study[J]. Am J Transplant, 2016, 16(5): 1596-1603. DOI: 10.1111/ajt.13663.
    [27] RÖTH A, BARCELLINI W, D'SA S, et al. Sutimlimab in cold agglutinin disease[J]. N Engl J Med, 2021, 384(14): 1323-1334. DOI: 10.1056/NEJMoa2027760.
    [28] ESKANDARY F, JILMA B, MÜHLBACHER J, et al. Anti-C1s monoclonal antibody BIVV009 in late antibody-mediated kidney allograft rejection-results from a first-in-patient phase 1 trial[J]. Am J Transplant, 2018, 18(4): 916-926. DOI: 10.1111/ajt.14528.
    [29] ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [30] GAO Y, SHAN W, GU T, et al. Daratumumab prevents experimental xenogeneic graft-versus-host disease by skewing proportions of T cell functional subsets and inhibiting T cell activation and migration[J]. Front Immunol, 2021, 12: 785774. DOI: 10.3389/fimmu.2021.785774.
    [31] BOCKERMANN R, JÄRNUM S, RUNSTRÖM A, et al. Imlifidase-generated single-cleaved IgG: implications for transplantation[J]. Transplantation, 2022, 106(7): 1485-1496. DOI: 10.1097/TP.0000000000004031.
    [32] DELAURA I, ZIKOS J, ANWAR IJ, et al. The impact of IdeS (imlifidase) on allo-specific, xeno-reactive, and protective antibodies in a sensitized rhesus macaque model[J]. Xenotransplantation, 2023, DOI: 10.1111/xen.12833[Epub ahead of print
    [33] HANSEN-ESTRUCH C, COOPER DKC, JUDD E. Physiological aspects of pig kidney xenotransplantation and implications for management following transplant[J]. Xenotransplantation, 2022, 29(3): e12743. DOI: 10.1111/xen.12743.
    [34] HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. Am J Transplant, 2023, 23(3): 353-365. DOI: 10.1016/j.ajt.2022.11.022.
    [35] FIRL DJ, MARKMANN JF. Measuring success in pig to non-human-primate renal xenotransplantation: systematic review and comparative outcomes analysis of 1051 life-sustaining NHP renal allo- and xeno-transplants[J]. Am J Transplant, 2022, 22(6): 1527-1536. DOI: 10.1111/ajt.16994.
    [36] KIM SC, MATHEWS DV, BREEDEN CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion[J]. Am J Transplant, 2019, 19(8): 2174-2185. DOI: 10.1111/ajt.15329.
    [37] IWASE H, HARA H, EZZELARAB M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts[J]. Xenotransplantation, 2017, 24(2):e12293. DOI: 10.1111/xen.12293.
    [38] LI T, JIANG H, LIU H, et al. Extracellular histones and xenotransplantation[J]. Xenotransplantation, 2020, 27(5): e12618. DOI: 10.1111/xen.12618.
    [39] LU T, YANG B, WANG R, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 2020, 10: 3060. DOI: 10.3389/fimmu.2019.03060.
    [40] 宋佳华, 余一凡, 邓文艺, 等. 异种肾移植: 生理学研究的现状及发展趋势[J]. 器官移植, 2023, 14(6): 898-904. DOI: 10.3969/j.issn.1674-7445.2023148.

    SONG JH, YU YF, DENG WY, et al. Kidney xenotransplantation: the present situation and development trend of physiological research[J]. Organ Transplant, 2023, 14(6): 898-904. DOI: 10.3969/j.issn.1674-7445.2023148.
    [41] BOSE S, VOLPATTI LR, THIONO D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells[J]. Nat Biomed Eng, 2020, 4(8): 814-826. DOI: 10.1038/s41551-020-0538-5.
    [42] 蒋鸿涛, 李涛, 何松哲, 等. 基因修饰猪-非人灵长类动物异种肾移植面临的问题及挑战[J]. 器官移植, 2022, 13(6): 810-817. DOI: 10.3969/j.issn.1674-7445.2022.06.018.

    JIANG HT, LI T, HE SZ, et al. Problems and challenges of genetically modified pig-non-human primate xenotransplantation[J]. Organ Transplant, 2022, 13(6): 810-817. DOI: 10.3969/j.issn.1674-7445.2022.06.018.
    [43] DENNER J. Porcine endogenous retroviruses and xenotransplantation, 2021[J]. Viruses, 2021, 13(11): 2156. DOI: 10.3390/v13112156.
    [44] 曾嘉庆, 高岩, 仇相书, 等. 猪逆转录病毒SYBR Green Ⅰ荧光定量PCR检测方法的建立及应用[J]. 中国病原生物学杂志, 2022, 17(1): 26-30. DOI: 10.13350/j.cjpb.220107.

    ZENG JQ, GAO Y, QIU XS, et al. Establishment and application of fluorescence quantitative PCR for detection of porcine retrovirus SYBR Green Ⅰ[J]. Chin J Pathog Biolo, 2022, 17(1): 26-30. DOI: 10.13350/j.cjpb.220107.
    [45] PISANO MP, GRANDI N, TRAMONTANO E. High-throughput sequencing is a crucial tool to investigate the contribution of human endogenous retroviruses (HERVs) to human biology and development[J]. Viruses, 2020, 12(6): 633. DOI: 10.3390/v12060633.
    [46] GU W, ZENG N, ZHOU L, et al. Genomic organization and molecular characterization of porcine cytomegalovirus[J]. Virology, 2014, 460/461: 165-172. DOI: 10.1016/j.virol.2014.05.014.
    [47] GRIFFITH BP, GOERLICH CE, SINGH AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. N Engl J Med, 2022, 387(1): 35-44. DOI: 10.1056/NEJMoa2201422.
    [48] DENNER J, LÄNGIN M, REICHART B, et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival[J]. Sci Rep, 2020, 10(1): 17531. DOI: 10.1038/s41598-020-73150-9.
    [49] HALECKER S, HANSEN S, KRABBEN L, et al. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation[J]. Sci Rep, 2022, 12(1): 21545. DOI: 10.1038/s41598-022-25624-1.
    [50] SINGH AK, GRIFFITH BP, GOERLICH CE, et al. The road to the first FDA-approved genetically engineered pig heart transplantation into human[J]. Xenotransplantation, 2022, 29(5): e12776. DOI: 10.1111/xen.12776.
    [51] GARDINER D, MCGEE A, SIMPSON C, et al. Baseline ethical principles and a framework for evaluation of policies: recommendations from an international consensus forum[J]. Transplant Direct, 2023, 9(5): e1471. DOI: 10.1097/TXD.0000000000001471.
    [52] 徐莹, 陈佳弘, 何松哲, 等. 移植相关人群对异种肾移植的态度及影响因素[J]. 器官移植, 2023, 14(5): 683-690. DOI: 10.3969/j.issn.1674-7445.2023118.

    XU Y, CHEN JH, HE SZ, et al. Attitude and influencing factors of transplant-related population towards kidney xenotransplantation[J]. Organ Transplant, 2023, 14(5): 683-690. DOI: 10.3969/j.issn.1674-7445.2023118.
  • 加载中
图(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  133
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回