留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转基因猪骨髓间充质干细胞的分离及与猪胰岛的共培养研究

朱淑芳, 曲泽澎, 陆赢, 等. 转基因猪骨髓间充质干细胞的分离及与猪胰岛的共培养研究[J]. 器官移植, 2024, 15(1): 55-62. doi: 10.3969/j.issn.1674-7445.2023205
引用本文: 朱淑芳, 曲泽澎, 陆赢, 等. 转基因猪骨髓间充质干细胞的分离及与猪胰岛的共培养研究[J]. 器官移植, 2024, 15(1): 55-62. doi: 10.3969/j.issn.1674-7445.2023205
Zhu Shufang, Qu Zepeng, Lu Ying, et al. Isolation of bone marrow mesenchymal stem cells in transgenic pigs and co-culture with porcine islets[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 55-62. doi: 10.3969/j.issn.1674-7445.2023205
Citation: Zhu Shufang, Qu Zepeng, Lu Ying, et al. Isolation of bone marrow mesenchymal stem cells in transgenic pigs and co-culture with porcine islets[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 55-62. doi: 10.3969/j.issn.1674-7445.2023205

转基因猪骨髓间充质干细胞的分离及与猪胰岛的共培养研究

doi: 10.3969/j.issn.1674-7445.2023205
基金项目: 国家重点研发计划(2017YFC1103704);国家自然科学基金重大项目(32095504);深圳市科技计划(GJHZ20200731095207021)
详细信息
    作者简介:
    通讯作者:

    牟丽莎(ORCID 0000-0001-6232-8341),博士,副研究员,研究方向为胰岛移植,Email:lishamou@gmail.com

  • 中图分类号: R617, Q78

Isolation of bone marrow mesenchymal stem cells in transgenic pigs and co-culture with porcine islets

More Information
  • 摘要:   目的   探讨α-1, 3-半乳糖基转移酶(GGTA1)基因敲除(GTKO)、GTKO/人补体调节蛋白hCD46插入、单磷酸胞嘧啶-N-乙酰神经氨酸羟化酶(CMAH)/GGTA1双基因敲除(Neu5GC/Gal)猪骨髓间充质干细胞(BMSC)的分离培养,以及与猪胰岛共培养对胰岛的保护作用。  方法  从不同转基因修饰GTKO、GTKO/hCD46及Neu5GC/Gal猪中提取骨髓,采用全骨髓法分离猪BMSC后进行培养。对BMSC进行形态学观察,并使用流式细胞术鉴定BMSC表面标志物。同时,观察BMSC诱导的多向分化,通过绿色荧光蛋白(GFP)转染标记猪BMSC来实现对BMSC的标记和示踪。将GFP转染标记的猪BMSC与猪胰岛细胞共培养,观察猪胰岛形态变化,与单纯猪胰岛细胞培养组进行比较。  结果  猪来源的BMSC在体外培养时呈梭形,表达标志物CD29、CD44、CD73、CD90、CD105及CD166,不表达CD34、CD45,具有向脂肪细胞、成骨细胞、软骨细胞分化的能力;通过GFP转染标记的猪BMSC能够实现BMSC的标记和示踪,且在细胞分裂后的子代细胞中也能够稳定表达。猪BMSC对胰岛细胞有一定保护能力。  结论  成功建立了GFP标记的GTKO、GTKO/hCD46及Neu5GC/Gal猪来源的BMSC,其对胰岛细胞具有一定的保护能力。

     

  • 图  1  猪BMSC形态学表现(×100)

    注:A图为野生型外三元猪BMSC;B图为野生型巴马猪BMSC;C图为野生型五指山猪BMSC;D图为GTKO/hCD46五指山猪BMSC;E图为GTKO巴马猪BMSC;F图为GTKO五指山猪BMSC;G图为野生型藏猪BMSC;H图为Neu5GC/Gal五指山猪BMSC。

    Figure  1.  Morphological findings of BMSC of pig

    图  2  GTKO五指山猪BMSC的三系分化结果(×100)

    注:A图为原位茜素红染色;B图为油红-O染色;C图为阿利新蓝染色。

    Figure  2.  The trilineage differentiation results of BMSC of GTKO Wuzhishan pig

    图  3  GTKO五指山猪BMSC表面标志物表达情况

    Figure  3.  Expression of cell surface markers of BMSC of GTKO Wuzhishan pig

    图  4  GTKO五指山猪BMSC标记示踪结果(×100)

    注:A图为BMSC培养36 h后GFP表达情况;B图为BMSC培养48 h后GFP表达情况。

    Figure  4.  Labeling and tracing results of BMSC of GTKO Wuzhishan pig

    图  5  猪胰岛与GTKO五指山猪BMSC的共培养结果(×100)

    注:A图为猪胰岛单独培养;B图为GFP转染标记的BMSC单独培养;C图为猪胰岛与GFP转染标记的BMSC共培养。

    Figure  5.  Co-culture results of porcine pancreatic islets and BMSC of GTKO Wuzhishan pig

    图  6  不同培养条件下猪胰岛细胞活力

    注:A图为Ham培养猪胰岛细胞;B图为HamCDM培养猪胰岛细胞;C图为Ham培养猪胰岛细胞48 h后细胞染色;D图为HamCDM培养猪胰岛48 h细胞染色(绿色为活细胞染色,红色为死细胞染色)。

    Figure  6.  Viability of porcine pancreatic islet cells under different culture conditions

  • [1] HELMAN A, MELTON DA. A stem cell approach to cure type 1 diabetes[J]. Cold Spring Harb Perspect Biol, 2021, 13(1): a035741. DOI: 10.1101/cshperspect.a035741.
    [2] NAQVI RA, NAQVI AR, SINGH A, et al. The future treatment for type 1 diabetes: pig islet- or stem cell-derived β cells?[J]. Front Endocrinol (Lausanne), 2023, 13: 1001041. DOI: 10.3389/fendo.2022.1001041.
    [3] 罗说明, 周智广. 1型糖尿病治疗新技术的现状与未来[J]. 中国医师杂志, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.

    LUO SM, ZHOU ZG. Current status and future of new technologies in the treatment of type 1 diabetes[J]. J Chin Physician, 2023, 25(3): 321-324. DOI: 10.3760/cma.j.cn431274-20230215-00159.
    [4] 杨玉伟, 张婷, 李万里, 等. 胰岛移植即刻经血液介导的炎症反应应对策略[J]. 器官移植, 2023, 14(3): 352-357. DOI: 10.3969/j.issn.1674-7445.2023.03.005.

    YANG YW, ZHANG T, LI WL, et al. Therapeutic strategy for instant blood-mediated inflammatory reaction after islet transplantation[J]. Organ Transplant, 2023, 14(3): 352-357. DOI: 10.3969/j.issn.1674-7445.2023.03.005.
    [5] MARFIL-GARZA BA, IMES S, VERHOEFF K, et al. Pancreatic islet transplantation in type 1 diabetes: 20-year experience from a single-centre cohort in Canada[J]. Lancet Diabetes Endocrinol, 2022, 10(7): 519-532. DOI: 10.1016/S2213-8587(22)00114-0.
    [6] WALKER S, APPARI M, FORBES S. Considerations and challenges of islet transplantation and future therapies on the horizon[J]. Am J Physiol Endocrinol Metab, 2022, 322(2): E109-E117. DOI: 10.1152/ajpendo.00310.2021.
    [7] MARFIL-GARZA BA, SHAPIRO AMJ, KIN T. Clinical islet transplantation: current progress and new frontiers[J]. J Hepatobiliary Pancreat Sci, 2021, 28(3): 243-254. DOI: 10.1002/jhbp.891.
    [8] QU Z, LOU Q, COOPER DKC, et al. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus[J]. Xenotransplantation, 2021, 28(3): e12678. DOI: 10.1111/xen.12678.
    [9] NGUYEN TT, PHAM DV, PARK J, et al. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation[J]. Sci Adv, 2022, 8(34): eabn8614. DOI: 10.1126/sciadv.abn8614.
    [10] KIKUCHI T, NISHIMURA M, KOMORI N, et al. Development and characterization of islet-derived mesenchymal stem cells from clinical grade neonatal porcine cryopreserved islets[J]. Xenotransplantation, 2023,DOI: 10.1111/xen.12831[Epub ahead of print
    [11] 师越, 李燕, 金慧方, 等. 人间充质干细胞质量研究及评价进展[J]. 国际生物医学工程杂志, 2023, 46(3): 275-280. DOI: 10.3760/cma.j.cn121382-20230411-00315.

    SHI Y, LI Y, JIN HF, et al. Research progress in quality research and evaluation of human mesenchymal stem cells[J]. Int J Biomed Eng, 2023, 46(3): 275-280. DOI: 10.3760/cma.j.cn121382-20230411-00315.
    [12] WANG Y, FANG J, LIU B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11): 1515-1530. DOI: 10.1016/j.stem.2022.10.001.
    [13] WANG LT, LIU KJ, SYTWU HK, et al. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: use of cell-free products and human pluripotent stem cell-derived mesenchymal stem cells[J]. Stem Cells Transl Med, 2021, 10(9): 1288-1303. DOI: 10.1002/sctm.21-0021.
    [14] 潘兴华, 王颖翠, 张梦园, 等. 脐带间充质干细胞临床研究的伦理与安全问题[J]. 西南国防医药, 2018, 28(1): 4-6. DOI: 10.3969/j.issn.1004-0188.2018.01.002.

    PAN XH, WANG YC, ZHANG MY, et al. Ethical and safety issues in clinical research of umbilical cord mesenchymal stem cells[J]. Med J Natl Defend Forces Southwest China, 2018, 28(1): 4-6. DOI: 10.3969/j.issn.1004-0188.2018.01.002.
    [15] NISHIMURA M, NGUYEN L, WATANABE N, et al. Development and characterization of novel clinical grade neonatal porcine bone marrow-derived mesenchymal stem cells[J]. Xenotransplantation, 2019, 26(3): e12501. DOI: 10.1111/xen.12501.
    [16] GARCIA GA, OLIVEIRA RG, DARIOLLI R, et al. Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells[J]. Braz J Med Biol Res, 2022, 55: e12343. DOI: 10.1590/1414-431X2022e12343.
    [17] TERATANI T, KASAHARA N, FUJIMOTO Y, et al. Mesenchymal stem cells secretions enhanced ATP generation on isolated islets during transplantation[J]. Islets, 2022, 14(1): 69-81. DOI: 10.1080/19382014.2021.2022423.
    [18] 淮国丽, 杜嘉祥, 潘登科. 基因编辑猪用于急性肝衰竭治疗的路径探讨[J]. 临床肝胆病杂志, 2022, 38(10): 2214-2218. DOI: 10.3969/j.issn.1001-5256.2022.10.004.

    HUAI GL, DU JX, PAN DK. The discussion on the genetically modified pigs for the treatment of acute liver failure[J]. J Clin Hepatol, 2022, 38(10): 2214-2218. DOI: 10.3969/j.issn.1001-5256.2022.10.004.
    [19] SYKES M, SACHS DH. Progress in xenotransplantation: overcoming immune barriers[J]. Nat Rev Nephrol, 2022, 18(12): 745-761. DOI: 10.1038/s41581-022-00624-6.
    [20] QI C, PANG D, YANG K, et al. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing[J]. iScience, 2022, 25(10): 105268. DOI: 10.1016/j.isci.2022.105268.
    [21] PIERSON RN 3RD. Progress toward pig-to-human xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1871-1873. DOI: 10.1056/NEJMp2118019.
    [22] DOS SANTOS RMN. Kidney xenotransplantation: are we ready for prime time?[J]. Curr Urol Rep, 2023, 24(6): 287-297. DOI: 10.1007/s11934-023-01156-7.
    [23] BURLAK C, TAYLOR RT, WANG ZY, et al. Human anti-α-fucose antibodies are xenoreactive toward GGTA1/CMAH knockout pigs[J]. Xenotransplantation, 2020, 27(6): e12629. DOI: 10.1111/xen.12629.
    [24] DING F, LIN Y, LIU G, et al. Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection[J]. Genes Immun, 2022, 23(6): 175-182. DOI: 10.1038/s41435-022-00182-8.
    [25] YOON S, LEE S, PARK C, et al. An efficacious transgenic strategy for triple knockout of xeno-reactive antigen genes GGTA1, CMAH, and B4GALNT2 from Jeju native pigs[J]. Vaccines (Basel), 2022, 10(9): 1503. DOI: 10.3390/vaccines10091503.
    [26] JAGDALE A, NGUYEN H, LI J, et al. Does expression of a human complement-regulatory protein on xenograft cells protect them from systemic complement activation?[J]. Int J Surg, 2020, 83: 184-188. DOI: 10.1016/j.ijsu.2020.09.034.
    [27] CHABAN R, MCGRATH G, HABIBABADY Z, et al. Increased human complement pathway regulatory protein gene dose is associated with increased endothelial expression and prolonged survival during ex-vivo perfusion of GTKO pig lungs with human blood[J]. Xenotransplantation, 2023, 30(4): e12812. DOI: 10.1111/xen.12812.
    [28] BURDORF L, LAIRD CT, HARRIS DG, et al. Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments[J]. Am J Transplant, 2022, 22(1): 28-45. DOI: 10.1111/ajt.16809.
    [29] KIKUCHI T, NISHIMURA M, HIRATA M, et al. Development and characterization of Gal KO porcine bone marrow-derived mesenchymal stem cells[J]. Xenotransplantation, 2021, 28(6): e12717. DOI: 10.1111/xen.12717.
    [30] TECTOR AJ, MOSSER M, TECTOR M, et al. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation[J]. Front Immunol, 2020, 11: 622. DOI: 10.3389/fimmu.2020.00622.
    [31] GALILI U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy[J]. Immunol Cell Biol, 2005, 83(6): 674-686. DOI: 10.1111/j.1440-1711.2005.01366.x.
    [32] RAO JS, HOSNY N, KUMBHA R, et al. HLA-G1+ expression in GGTA1KO pigs suppresses human and monkey anti-pig T, B and NK cell responses[J]. Front Immunol, 2021, 12: 730545. DOI: 10.3389/fimmu.2021.730545.
    [33] CHABAN R, HABIBABADY Z, HASSANEIN W, et al. Knock-out of N-glycolylneuraminic acid attenuates antibody-mediated rejection in xenogenically perfused porcine lungs[J]. Xenotransplantation, 2022, 29(6): e12784. DOI: 10.1111/xen.12784.
    [34] LANDSTRA CP, NIJHOFF MF, ROELEN DL, et al. Diagnosis and treatment of allograft rejection in islet transplantation[J]. Am J Transplant, 2023, 23(9): 1425-1433. DOI: 10.1016/j.ajt.2023.05.035.
    [35] JEYAGARAN A, LU CE, ZBINDEN A, et al. Type 1 diabetes and engineering enhanced islet transplantation[J]. Adv Drug Deliv Rev, 2022, 189: 114481. DOI: 10.1016/j.addr.2022.114481.
    [36] KABAKCHIEVA P, ASSYOV Y, GERASOUDIS S, et al. Islet transplantation-immunological challenges and current perspectives[J]. World J Transplant, 2023, 13(4): 107-121. DOI: 10.5500/wjt.v13.i4.107.
    [37] SONG N, SCHOLTEMEIJER M, SHAH K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential[J]. Trends Pharmacol Sci, 2020, 41(9): 653-664. DOI: 10.1016/j.tips.2020.06.009.
    [38] SHEN Z, HUANG W, LIU J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12: 749192. DOI: 10.3389/fimmu.2021.749192.
  • 加载中
图(7)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  153
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回