留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞与缺血-再灌注损伤相关研究进展

刘琦, 张燕楠, 孙启全. 巨噬细胞与缺血-再灌注损伤相关研究进展[J]. 器官移植, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161
引用本文: 刘琦, 张燕楠, 孙启全. 巨噬细胞与缺血-再灌注损伤相关研究进展[J]. 器官移植, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161
Liu Qi, Zhang Yannan, Sun Qiquan. Research progress on association between macrophages and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161
Citation: Liu Qi, Zhang Yannan, Sun Qiquan. Research progress on association between macrophages and ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2024, 15(1): 40-45. doi: 10.3969/j.issn.1674-7445.2023161

巨噬细胞与缺血-再灌注损伤相关研究进展

doi: 10.3969/j.issn.1674-7445.2023161
基金项目: 国家自然科学基金面上项目(82270783)
详细信息
    作者简介:
    通讯作者:

    孙启全(ORCID 0000-0002-7296-316X),博士,教授,研究方向为移植免疫,Email: sunqiquan@gdph.org.cn

  • 中图分类号: R617, R329.2

Research progress on association between macrophages and ischemia-reperfusion injury

More Information
  • 摘要: 缺血-再灌注损伤(IRI)是一个极其复杂的病理生理过程,可在心肌梗死、卒中、器官移植、涉及暂时中断血流的手术等过程中发生。巨噬细胞作为免疫系统的关键分子,在IRI的发病机制中起着至关重要的作用。M1型巨噬细胞是促炎细胞,参与病原体的清除;而M2型巨噬细胞具有抗炎作用,参与组织修复和重塑以及细胞外基质重塑。巨噬细胞表型之间的平衡对于IRI的结局和治疗十分重要。本文综述了巨噬细胞在IRI中的作用,包括巨噬细胞M1/M2表型平衡、向不同缺血组织浸润和募集的机制。此外,还讨论了IRI过程中靶向巨噬细胞的潜在治疗策略,为减轻IRI和促进组织修复相关研究提供参考。

     

  • [1] ELTZSCHIG HK, ECKLE T. Ischemia and reperfusion--from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401. DOI: 10.1038/nm.2507.
    [2] PRZYKAZA Ł. Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade[J]. Front Immunol, 2021, 12: 782569. DOI: 10.3389/fimmu.2021.782569.
    [3] HAUSENLOY DJ, YELLON DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target[J]. J Clin Invest, 2013, 123(1): 92-100. DOI: 10.1172/JCI62874.
    [4] JIMÉNEZ-CASTRO MB, CORNIDE-PETRONIO ME, GRACIA-SANCHO J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131. DOI: 10.3390/cells8101131.
    [5] MANTOVANI A, SICA A, LOCATI M. Macrophage polarization comes of age[J]. Immunity, 2005, 23(4): 344-346. DOI: 10.1016/j.immuni.2005.10.001.
    [6] LAZAROV T, JUAREZ-CARREÑO S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x.
    [7] GESKE FJ, MONKS J, LEHMAN L, et al. The role of the macrophage in apoptosis: hunter, gatherer, and regulator[J]. Int J Hematol, 2002, 76(1): 16-26. DOI: 10.1007/BF02982714.
    [8] VAROL C, MILDNER A, JUNG S. Macrophages: development and tissue specialization[J]. Annu Rev Immunol, 2015, 33: 643-675. DOI: 10.1146/annurev-immunol-032414-112220.
    [9] MOSSER DM, EDWARDS JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969. DOI: 10.1038/nri2448.
    [10] 陈玮钰, 覃小宾, 乐滢玉, 等. 巨噬细胞极化在非肿瘤性肝脏疾病中的作用机制及其靶向治疗[J]. 临床肝胆病杂志, 2022, 38(11): 2649-2653. DOI: 10.3969/j.issn.1001-5256.2022.11.042.

    CHEN WY, QIN XB, LE YY, et al. Mechanism of action of macrophage polarization in non-neoplastic liver diseases and related targeted therapies[J]. J Clin Hepatol, 2022, 38(11): 2649-2653. DOI: 10.3969/j.issn.1001-5256.2022.11.042.
    [11] WANG H, XI Z, DENG L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113. DOI: 10.7150/ijms.52691.
    [12] SHAPOURI-MOGHADDAM A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
    [13] ZHANG H, LI Z, LI W. M2 macrophages serve as critical executor of innate immunity in chronic allograft rejection[J]. Front Immunol, 2021, 12: 648539. DOI: 10.3389/fimmu.2021.648539.
    [14] 王静,高煜茹,蔡钱伟, 等. 瑞马唑仑通过调节肺泡巨噬细胞极化减轻脂多糖诱导的急性肺损伤[J]. 实用医学杂志, 2023, 39(9): 1092-1097. DOI: 10.3969/j.issn.1006-5725.2023.09.005.

    WANG J, GAO YR, CAI QW, et al. Remimazolam alleviates LPS-induced acute lung injury by regulating macrophage polarization[J]. J Pract Med, 2023, 39(9): 1092-1097. DOI: 10.3969/j.issn.1006-5725.2023.09.005.
    [15] PENG Q, NOWOCIN A, RATNASOTHY K, et al. Inhibition of thrombin on endothelium enhances recruitment of regulatory T cells during IRI and when combined with adoptive Treg transfer, significantly protects against acute tissue injury and prolongs allograft survival[J]. Front Immunol, 2023, 13: 980462. DOI: 10.3389/fimmu.2022.980462.
    [16] HU Z, ZHAN J, PEI G, et al. Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition[J]. Ren Fail, 2023, 45(1): 2149412. DOI: 10.1080/0886022X.2022.2149412.
    [17] LAN T, BI F, XU Y, et al. PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress[J]. Int J Oral Sci, 2023, 15(1): 10. DOI: 10.1038/s41368-023-00217-4.
    [18] WANG S, CAI Y, BU R, et al. PPARγ regulates macrophage polarization by inhibiting the JAK/STAT pathway and attenuates myocardial ischemia/reperfusion injury in vivo[J]. Cell Biochem Biophys, 2023, 81(2): 349-358. DOI: 10.1007/s12013-023-01137-0.
    [19] POPOV SV, MUKHOMEDZYANOV AV, VORONKOV NS, et al. Regulation of autophagy of the heart in ischemia and reperfusion[J]. Apoptosis, 2023, 28(1/2): 55-80. DOI: 10.1007/s10495-022-01786-1.
    [20] SHAO X, XU P, JI L, et al. Low-dose decitabine promotes M2 macrophage polarization in patients with primary immune thrombocytopenia via enhancing KLF4 binding to PPARγ promoter[J]. Clin Transl Med, 2023, 13(7): e1344. DOI: 10.1002/ctm2.1344.
    [21] SUN K, LI YY, JIN J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair[J]. Signal Transduct Target Ther, 2021, 6(1): 79. DOI: 10.1038/s41392-020-00455-6.
    [22] WU X, SINGLA S, LIU JJ, et al. The role of macrophage ion channels in the progression of atherosclerosis[J]. Front Immunol, 2023, 14: 1225178. DOI: 10.3389/fimmu.2023.1225178.
    [23] PENG Y, ZHOU M, YANG H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023: 8821610. DOI: 10.1155/2023/8821610.
    [24] 董星辰, 孙晓阳. 趋化因子及其受体在胶质瘤诊断及治疗中的研究进展[J]. 医学综述, 2022, 28(12): 2403-2407. DOI: 10.3969/j.issn.1006-2084.2022.12.020.

    DONG XC, SUN XY. Research progress of chemokines and their receptors in diagnosis and treatment of glioma[J]. Med Recap, 2022, 28(12): 2403-2407. DOI: 10.3969/j.issn.1006-2084.2022.12.020.
    [25] ZHUANG L, ZONG X, YANG Q, et al. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization[J]. EBioMedicine, 2023, 95: 104744. DOI: 10.1016/j.ebiom.2023.104744.
    [26] WANG J, LIU X, GU Y, et al. DNA binding protein YB-1 is a part of the neutrophil extracellular trap mediation of kidney damage and cross-organ effects[J]. Kidney Int, 2023, 104(1): 124-138. DOI: 10.1016/j.kint.2023.02.032.
    [27] TANG W, PANJA S, JOGDEO CM, et al. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury[J]. Biomaterials, 2022, 285: 121562. DOI: 10.1016/j.biomaterials.2022.121562.
    [28] WEI X, WEN Y, HU Y, et al. Total saponins of Panax notoginseng modulate the astrocyte inflammatory signaling pathway and attenuate inflammatory injury induced by oxygen-glucose deprivation/reperfusion injury in rat brain microvascular endothelial cells[J]. Curr Stem Cell Res Ther, 2024, 19(2): 267-276. DOI: 10.2174/1574888X18666230509113912.
    [29] YOO KD, CHA RH, LEE S, et al. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury[J]. J Cell Mol Med, 2020, 24(10): 5515-5527. DOI: 10.1111/jcmm.15207.
    [30] CANTERO-NAVARRO E, RAYEGO-MATEOS S, OREJUDO M, et al. Role of macrophages and related cytokines in kidney disease[J]. Front Med (Lausanne), 2021, 8: 688060. DOI: 10.3389/fmed.2021.688060.
    [31] ZHANG H, LIU Y, CAO X, et al. Nrf2 promotes inflammation in early myocardial ischemia-reperfusion via recruitment and activation of macrophages[J]. Front Immunol, 2021, 12: 763760. DOI: 10.3389/fimmu.2021.763760.
    [32] LI J. Alterations in cell adhesion proteins and cardiomyopathy[J]. World J Cardiol, 2014, 6(5): 304-313. DOI: 10.4330/wjc.v6.i5.304.
    [33] MARCHINI T, MITRE LS, WOLF D. Inflammatory cell recruitment in cardiovascular disease[J]. Front Cell Dev Biol, 2021, 9: 635527. DOI: 10.3389/fcell.2021.635527.
    [34] ROUSHANSARAI NS, PASCHER A, BECKER F. Innate immune cells during machine perfusion of liver grafts-the janus face of hepatic macrophages[J]. J Clin Med, 2022, 11(22): 6669. DOI: 10.3390/jcm11226669.
    [35] LU TF, YANG TH, ZHONG CP, et al. Dual effect of hepatic macrophages on liver ischemia and reperfusion injury during liver transplantation[J]. Immune Netw, 2018, 18(3): e24. DOI: 10.4110/in.2018.18.e24.
    [36] WANG M, PAN W, XU Y, et al. Microglia-mediated neuroinflammation: a potential target for the treatment of cardiovascular diseases[J]. J Inflamm Res, 2022, 15: 3083-3094. DOI: 10.2147/JIR.S350109.
    [37] SUN XR, YAO ZM, CHEN L, et al. Metabolic reprogramming regulates microglial polarization and its role in cerebral ischemia reperfusion[J]. Fundam Clin Pharmacol, 2023, 37(6): 1065-1078. DOI: 10.1111/fcp.12928.
    [38] LIU H, LI Y, XIONG J. The role of hypoxia-inducible factor-1 alpha in renal disease[J]. Molecules, 2022, 27(21): 7318. DOI: 10.3390/molecules27217318.
    [39] ZHENG J, CHEN P, ZHONG J, et al. HIF-1α in myocardial ischemia-reperfusion injury (review)[J]. Mol Med Rep, 2021, 23(5): 352. DOI: 10.3892/mmr.2021.11991.
    [40] LIANG Y, QU L, LIU Z, et al. The IRE1/JNK signaling pathway regulates inflammation cytokines and production of glomerular extracellular matrix in the acute kidney injury to chronic kidney disease transition[J]. Mol Biol Rep, 2022, 49(8): 7709-7718. DOI: 10.1007/s11033-022-07588-7.
    [41] FLORES-VERGARA R, OLMEDO I, ARÁNGUIZ P, et al. Communication between cardiomyocytes and fibroblasts during cardiac ischemia/reperfusion and remodeling: roles of TGF-β, CTGF, the renin angiotensin axis, and non-coding RNA molecules[J]. Front Physiol, 2021, 12: 716721. DOI: 10.3389/fphys.2021.716721.
    [42] ELWANY NE, ABDELHAMID AM, MOHAMED NM, et al. Vinpocetine alleviates intestinal ischemia/reperfusion injury and enhances M2 macrophage polarization in rats: role of SIRT1/SOCS3/STAT3 signaling pathway[J]. Int Immunopharmacol, 2023, 122: 110654. DOI: 10.1016/j.intimp.2023.110654.
    [43] XU Z, WANG X, KUANG W, et al. Kaempferol improves acute kidney injury via inhibition of macrophage infiltration in septic mice[J]. Biosci Rep, 2023, 43(7): BSR20230873. DOI: 10.1042/BSR20230873.
    [44] ZHANG J, LIU L, DONG Z, et al. An ischemic area-targeting, peroxynitrite-responsive, biomimetic carbon monoxide nanogenerator for preventing myocardial ischemia-reperfusion injury[J]. Bioact Mater, 2023, 28: 480-494. DOI: 10.1016/j.bioactmat.2023.05.017.
    [45] CHANG FC, LIU CH, LUO AJ, et al. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells[J]. Kidney Int, 2022, 102(4): 780-797. DOI: 10.1016/j.kint.2022.06.026.
    [46] CHEN S, LI A, WU J, et al. Dexmedetomidine reduces myocardial ischemia-reperfusion injury in young mice through MIF/AMPK/GLUT4 axis[J]. BMC Anesthesiol, 2022, 22(1): 289. DOI: 10.1186/s12871-022-01825-z.
    [47] LUQUE-CAMPOS N, BUSTAMANTE-BARRIENTOS FA, PRADENAS C, et al. The macrophage response is driven by mesenchymal stem cell-mediated metabolic reprogramming[J]. Front Immunol, 2021, 12: 624746. DOI: 10.3389/fimmu.2021.624746.
    [48] ZHAO J, LI X, HU J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216. DOI: 10.1093/cvr/cvz040.
  • 加载中
图(1)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  141
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-16
  • 网络出版日期:  2023-11-29
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回