留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

circSNRK通过上调Akt通路改善肾小管上皮细胞缺血-再灌注损伤

孟凡航, 崔瑞文, 陈秋源, 等. circSNRK通过上调Akt通路改善肾小管上皮细胞缺血-再灌注损伤[J]. 器官移植, 2023, 14(4): 529-538. doi: 10.3969/j.issn.1674-7445.2023.04.009
引用本文: 孟凡航, 崔瑞文, 陈秋源, 等. circSNRK通过上调Akt通路改善肾小管上皮细胞缺血-再灌注损伤[J]. 器官移植, 2023, 14(4): 529-538. doi: 10.3969/j.issn.1674-7445.2023.04.009
Meng Fanhang, Cui Ruiwen, Chen Qiuyuan, et al. circSNRK alleviates ischemia-reperfusion injury in renal tubular epithelial cell by up-regulating Akt pathway[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 529-538. doi: 10.3969/j.issn.1674-7445.2023.04.009
Citation: Meng Fanhang, Cui Ruiwen, Chen Qiuyuan, et al. circSNRK alleviates ischemia-reperfusion injury in renal tubular epithelial cell by up-regulating Akt pathway[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 529-538. doi: 10.3969/j.issn.1674-7445.2023.04.009

circSNRK通过上调Akt通路改善肾小管上皮细胞缺血-再灌注损伤

doi: 10.3969/j.issn.1674-7445.2023.04.009
基金项目: 

广东省基础与应用基础研究基金 2021A1515010677

详细信息
    作者简介:
    通讯作者:

    曹荣华(ORCID:0009-0009-2070-8405),博士,主任医师,研究方向为肾移植,Email:qixing6064304084@163.com

  • 中图分类号: R617, R692

circSNRK alleviates ischemia-reperfusion injury in renal tubular epithelial cell by up-regulating Akt pathway

More Information
  • 摘要:   目的  探讨环状RNA SNRK(circSNRK)在缺血-再灌注损伤(IRI)中的作用及机制。  方法  构建缺氧-复氧(IRI)细胞模型,检测IRI处理后circSNRK的表达情况及过表达circSNRK对细胞增殖和细胞凋亡的影响。分析circSNRK的作用靶点。将HK2细胞分为空白组(Mock组)、IRI组、对照质粒+IRI组(IRI+NC组)、过表达人circSNRK+IRI组(IRI+circSNRK组)、过表达人circSNRK+IRI+蛋白激酶B(Akt)抑制剂组(IRI+circSNRK+MK2206组)、对照质粒组(NC组)。检测Mock组、IRI组、IRI+NC组、IRI+circSNRK组细胞增殖及凋亡情况。进行circSNRK作用靶点的基因本体(GO)富集分析和京都基因与基因组百科全书(KEGG)聚类分析。检测Mock组、IRI组、IRI+NC组、IRI+circSNRK组细胞CDKN1A、Akt、B细胞淋巴瘤(Bcl)-2、半胱氨酸天冬氨酸蛋白酶(Caspase)-9信使RNA(mRNA)表达水平,p21、Bcl-2、Caspase-9、Akt、p-Akt蛋白表达水平。检测NC组、IRI+NC组、IRI+circSNRK组、IRI+circSNRK+MK2206组细胞增殖及凋亡情况。  结果  与Mock组比较,IRI组circSNRK表达水平较低,HK2细胞增殖能力下降,细胞凋亡增多。IRI+circSNRK组细胞增殖能力较IRI+NC组升高,细胞凋亡较IRI+NC组减少。circSNRK可通过51个微小RNA(miRNA)作用于648个靶点。GO富集分析显示,circSNRK作用靶点主要富集于细胞过程和生物调节等生物学过程,细胞部分、细胞和细胞外部分等细胞成分,以及结合、结合蛋白和酶等分子功能。KEGG聚类分析显示,circSNRK作用靶点主要富集在癌症信号通路、磷脂酰肌醇-3-激酶(PI3K)-Akt信号通路和癌症miRNA等相关通路。与Mock组比较,IRI组CDKN1A和Caspase-9 mRNA相对表达量较高,miR-99a-5p RNA表达水平较高,Akt和Bcl-2 mRNA相对表达量较低;与IRI+NC组比较,IRI+circSNRK组CDKN1A和Caspase-9 mRNA相对表达量较低,Akt和Bcl-2 mRNA相对表达量较高,miR-99a-5p RNA表达水平较低,差异均有统计学意义(均为P < 0.05)。IRI组p21和Caspase-9蛋白表达较Mock组增多,p-Akt、Akt和Bcl-2蛋白表达较Mock组减少;IRI+circSNRK组p21和Caspase-9蛋白表达较IRI+NC组减少,p-Akt、Akt和Bcl-2蛋白表达较IRI+NC组增多。circSNRK和Akt上存在miR-99a-5p结合位点。与NC组比较,IRI+NC组细胞增殖能力下降;与IRI+NC组比较,IRI+circSNRK组细胞增殖能力升高;与IRI+circSNRK组比较,IRI+circSNRK+MK2206组细胞增殖能力下降(均为P < 0.05)。IRI+NC组细胞凋亡水平较NC组高;IRI+circSNRK组细胞凋亡水平较IRI+NC组低;IRI+circSNRK+MK2206组细胞凋亡水平较IRI+circSNRK组高。  结论  在IRI条件下,circSNRK可影响HK2细胞增殖和凋亡,可能是通过Akt通路发挥作用。

     

  • 图  1  人circSNRK来源、鉴定以及同源性分析

    注:A图为人源circSNRK以及sanger测序验证环化拼接位点;B图为人和大鼠circSNRK序列Blast比对。

    Figure  1.  Sources, identification and homology analysis of human circSNRK

    图  2  IRI对HK2细胞circSNRK表达水平的影响

    注:A为Mock组和IRI组的circSNRK表达水平,与Mock组比较,aP < 0.05;B图为酶切验证circSNRK质粒构建;C图为过表达circSNRK效率验证,与NC组比较,aP < 0.05。

    Figure  2.  The effect of IRI on the circSNRK expression level of HK2 cells

    图  3  过表达circSNRK促进细胞增殖和抑制细胞凋亡

    注:A图为各组HK2细胞增殖情况,与Mock组比较,aP < 0.05,与IRI+NC组比较,bP < 0.05;B为各组HK2细胞凋亡情况。

    Figure  3.  Overexpression of circSNRK promotes cell proliferation and inhibits apoptosis

    图  4  circSNRK作用靶点的GO富集和KEGG聚类分析

    注:A图为GO富集分析结果;B图为KEGG聚类分析结果。

    Figure  4.  GO enrichment and KEGG clustering of circSNRK targets

    图  5  circSNRK对Akt通路的影响

    注:A图各组CDKN1A、Akt、Bcl-2、Caspase-9 mRNA相对表达量,与Mock组比较,aP < 0.05,与IRI+NC组比较,bP < 0.05;B图为各组p21、Bcl-2、Caspase-9、p-Akt、Akt蛋白相对表达量;C图为各组miR-99a-5p和miR-100-5p RNA相对表达量,与Mock组比较,aP < 0.05,与IRI+NC组比较,bP < 0.05;D图为miR-99a-5p和circSNRK以及Akt的相互作用位点。

    Figure  5.  Effect of circSNRK on Akt pathway

    图  6  circSNRK通过Akt通路影响HK2细胞增殖和凋亡

    注:A图为各组细胞增殖情况,与NC组比较,aP < 0.05,与IRI+NC组比较,bP < 0.05,与IRI+circSNRK组比较,cP < 0.05;B图为各组细胞凋亡情况。

    Figure  6.  circSNRK affects HK2 cell proliferation and apoptosis via the Akt pathway

    表  1  引物序列

    Table  1.   Primer sequences

    基因 序列(5’→3’)
    circSNRK 上游TGATGCACCTGCAGTAGGAAA
    下游GGCCTCGACCCAAGGTTTTA
    CDKN1A 上游ACTCTCAGGGTCGAAAACGG
    下游CAAGAAAGTTGGGTAGGGCTTC
    Akt 上游GTCATCGAACGCACCTTCCAT
    下游AGCTTCAGGTACTCAAACTCGT
    Bcl-2 上游TCATGTGTGTGGAGAGCGTC
    下游CAGCCCAGACTCACATCACC
    Caspase-9 上游CACGGCTTTGATGGAGATGG
    下游TCTCTCGATGGACACAGAGC
    GAPDH 上游GAGTCAACGGATTTGGTCGT
    下游GACAAGCTTCCCGTTCTCAG
    U6 上游CTCGCTTCGGCAGCACATA
    下游CGAATTTGCGTGTCATCCTTG
    miR-99a-5p 上游AACCCGTAGATCCGATCTT
    上游AACCCGTAGATCCGAAC
    miRNA Universe 通用下游GTGCAGGGTCCGAGGT
    下载: 导出CSV
  • [1] TOGHIANI R, ABOLMAALI SS, NAJAFI H, et al. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury[J]. Life Sci, 2022, 302: 120654. DOI: 10.1016/j.lfs.2022.120654.
    [2] 高伟东, 杨龙龙, 尹清臣. 氧化应激反应在边缘供肝肝移植缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(1): 126-131. DOI: 10.3969/j.issn.1674-7445.2022.01.019.

    GAO WD, YANG LL, YIN QC. Research progress on the role of oxidative stress in ischemia-reperfusion injury of marginal donor liver transplantation[J]. Organ Transplant, 2022, 13(1): 126-131. DOI: 10.3969/j.issn.1674-7445.2022.01.019.
    [3] KIM S, LEE SA, YOON H, et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury[J]. Kidney Int, 2021, 100(3): 570-584. DOI: 10.1016/j.kint.2021.04.039.
    [4] THAPA K, SINGH TG, KAUR A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-1341. DOI: 10.1007/s00210-022-02277-5.
    [5] KRUPA A, KRUPA MM, PAWLAK K. Indoleamine 2, 3 dioxygenase 1-the potential link between the innate immunity and the ischemia-reperfusion-induced acute kidney injury?[J]. Int J Mol Sci, 2022, 23(11): 6176. DOI: 10.3390/ijms23116176.
    [6] NOEL S, DESAI NM, HAMAD AR, et al. Sex and the single transplanted kidney[J]. J Clin Invest, 2016, 126(5): 1643-1635. DOI: 10.1172/JCI87428.
    [7] TAMMARO A, KERS J, SCANTLEBERY AML, et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration[J]. Front Immunol, 2020, 11: 1346. DOI: 10.3389/fimmu.2020.01346.
    [8] PENG D, LUO L, ZHANG X, et al. CircRNA: an emerging star in the progression of glioma[J]. Biomed Pharmacother, 2022, 151: 113150. DOI: 10.1016/j.biopha.2022.113150.
    [9] CHEN L, WANG C, SUN H, et al. The bioinformatics toolbox for circRNA discovery and analysis[J]. Brief Bioinform, 2021, 22(2): 1706-1728. DOI: 10.1093/bib/bbaa001.
    [10] SO BYF, YAP DYH, CHAN TM. Circular RNAs in acute kidney injury: roles in pathophysiology and implications for clinical management[J]. Int J Mol Sci, 2022, 23(15): 8509. DOI: 10.3390/ijms23158509.
    [11] MENG F, CHEN Q, GU S, et al. Inhibition of circ-SNRK ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway[J]. Ren Fail, 2022, 44(1): 672-681. DOI: 10.1080/0886022X.2022.2032746.
    [12] ZHANG S, XIA W, DUAN H, et al. Ischemic preconditioning alleviates mouse renal ischemia/reperfusion injury by enhancing autophagy activity of proximal tubular cells[J]. Kidney Dis (Basel), 2022, 8(3): 217-230. DOI: 10.1159/000521850.
    [13] SHARFUDDIN AA, MOLITORIS BA. Pathophysiology of ischemic acute kidney injury[J]. Nat Rev Nephrol, 2011, 7(4): 189-200. DOI: 10.1038/nrneph.2011.16.
    [14] DENG W, WEI X, XIE Z, et al. Inhibition of PLK3 attenuates tubular epithelial cell apoptosis after renal ischemia-reperfusion injury by blocking the ATM/P53-mediated DNA damage response[J]. Oxid Med Cell Longev, 2022: 4201287. DOI: 10.1155/2022/4201287.
    [15] LIU H, WANG L, WENG X, et al. Inhibition of Brd4 alleviates renal ischemia/reperfusion injury-induced apoptosis and endoplasmic reticulum stress by blocking FoxO4-mediated oxidative stress[J]. Redox Biol, 2019, 24: 101195. DOI: 10.1016/j.redox.2019.101195.
    [16] 闫林轩, 梅霄阳, 章林明, 等. G蛋白偶联雌激素受体通过减轻大鼠肾小管上皮细胞凋亡保护肾脏缺血再灌注损伤[J]. 实用医学杂志, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.

    YAN LX, MEI XY, ZHANG LM, et al. GPER protects renal ischemia-reperfusion injury by reducing the apoptosis of renal tubular epithelial cells in rats[J]. J Pract Med, 2021, 37(10): 1235-1239. DOI: 10.3969/j.issn.1006-5725.2021.10.001.
    [17] SHIVA N, SHARMA N, KULKARNI YA, et al. Renal ischemia/reperfusion injury: an insight on in vitro and in vivo models[J]. Life Sci, 2020, 256: 117860. DOI: 10.1016/j.lfs.2020.117860.
    [18] WANG ZY, LIU XX, DENG YF. Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction[J]. Cell Death Differ, 2022, 29(4): 709-721. DOI: 10.1038/s41418-021-00885-x.
    [19] ZHU Y, ZHAO P, SUN L, et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction[J]. Cell Death Discov, 2021, 7(1): 84. DOI: 10.1038/s41420-021-00467-3.
    [20] RINES AK, CHANG HC, WU R, et al. Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling[J]. Nat Commun, 2017, 8: 14095. DOI: 10.1038/ncomms14095.
    [21] THIRUGNANAM K, RAMCHANDRAN R. SNRK: a metabolic regulator with multifaceted role in development and disease[J]. Vessel Plus, 2020, 4: 26.
    [22] LU Q, MA Z, DING Y, et al. Circulating miR-103a-3p contributes to angiotensin Ⅱ-induced renal inflammation and fibrosis via a SNRK/NF-κB/p65 regulatory axis[J]. Nat Commun, 2019, 10(1): 2145. DOI: 10.1038/s41467-019-10116-0.
    [23] ELMORE S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4): 495-516. DOI: 10.1080/01926230701320337.
    [24] LEE YG, YANG N, CHUN I, et al. Apoptosis: a Janus bifrons in T-cell immunotherapy[J]. J Immunother Cancer, 2023, 11(4): e005967. DOI: 10.1136/jitc-2022-005967.
    [25] 李武, 刘占有, 王健宏. 机体抗病毒过程中细胞凋亡的研究进展[J]. 中国免疫学杂志, 2022, 38(23): 2933-2936, 2940. DOI: 10.3969/j.issn.1000-484X.2022.23.022.

    LI W, LIU ZY, WANG JH. Research progress of apoptosis in process of anti-virus[J]. Chin J Immunol, 2022, 38(23): 2933-2936, 2940. DOI: 10.3969/j.issn.1000-484X.2022.23.022.
    [26] YARYCHKIVSKA O, SHARMIN R, ELKHALIL A, et al. Apoptosis and beyond: a new era for programmed cell death in caenorhabditis elegans[J]. Semin Cell Dev Biol, 2023, DOI: 10.1016/j.semcdb.2023.02.003[Epubahead of print].
    [27] CONG L, BAI Y, GUO Z. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease[J]. Front Cardiovasc Med, 2022, 9: 997469. DOI: 10.3389/fcvm.2022.997469.
    [28] AZAM INA, WAHAB NA, MOKHTAR MH, et al. Roles of microRNAs in regulating apoptosis in the pathogenesis of endometriosis[J]. Life (Basel), 2022, 12(9): 1321. DOI: 10.3390/life12091321.
    [29] OBENG E. Apoptosis (programmed cell death) and its signals - a review[J]. Braz J Biol, 2021, 81(4): 1133-1143. DOI: 10.1590/1519-6984.228437.
    [30] KETELUT-CARNEIRO N, FITZGERALD KA. Apoptosis, pyroptosis, and necroptosis-oh my! the many ways a cell can die[J]. J Mol Biol, 2022, 434(4): 167378. DOI: 10.1016/j.jmb.2021.167378.
    [31] LIU C, CHEN K, WANG H, et al. Gastrin attenuates renal ischemia/reperfusion injury by a PI3K/Akt/Bad-mediated anti-apoptosis signaling[J]. Front Pharmacol, 2020, 11: 540479. DOI: 10.3389/fphar.2020.540479.
    [32] LI J, CHEN Q, HE X, et al. Dexmedetomidine attenuates lung apoptosis induced by renal ischemia-reperfusion injury through α2AR/PI3K/Akt pathway[J]. J Transl Med, 2018, 16(1): 78. DOI: 10.1186/s12967-018-1455-1.
    [33] 牛海名, 李建伟, 陈妙莲, 等. 外源性硫化氢通过PI3K/Akt/eNOS通路改善过氧化氢诱导的人脐静脉内皮细胞衰老[J]. 中山大学学报(医学科学版), 2021, 42(4): 535-542. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2021.0408.

    NIU HM, LI JW, CHEN ML, et al. Exogenous hydrogen sulfide improves hydrogen peroxide-induced senescence of human umbilical vein endothelial cells via PI3K/Akt/eNOS pathway[J]. J Sun Yat-sen Univ (Med Sci), 2021, 42(4): 535-542. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2021.0408.
    [34] 李想, 李安特, 孙秋霞, 等. PI3K/Akt信号通路与神经损伤修复的研究进展[J]. 中国老年学杂志, 2023, 43(1): 246-249. DOI: 10.3969/j.issn.1005-9202.2023.01.058.

    LI X, LI AT, SUN QX, et al. Research progress on PI3K/Akt signaling pathway and nerve injury repair[J]. Chin J Gerontol, 2023, 43(1): 246-249. DOI: 10.3969/j.issn.1005-9202.2023.01.058.
    [35] XIE L, ZHENG X, QIN J, et al. Role of PI3-kinase/Akt signalling pathway in renal function and cell proliferation after renal ischaemia/reperfusion injury in mice[J]. Nephrology (Carlton), 2006, 11(3): 207-212. DOI: 10.1111/j.1440-1797.2006.00558.x.
    [36] KIM IY, PARK YK, SONG SH, et al. Role of Akt1 in renal fibrosis and tubular dedifferentiation during the progression of acute kidney injury to chronic kidney disease[J]. Korean J Intern Med, 2021, 36(4): 962-974. DOI: 10.3904/kjim.2020.198.
    [37] LIU LJ, YU JJ, XU XL. Kappa-opioid receptor agonist U50448H protects against renal ischemia-reperfusion injury in rats via activating the PI3K/Akt signaling pathway[J]. Acta Pharmacol Sin, 2018, 39(1): 97-106. DOI: 10.1038/aps.2017.51.
    [38] 张郃, 龙超, 杨丽, 等. 氢吗啡酮预处理对大鼠肾缺血再灌注损伤时PI3 K/Akt的影响[J]. 实用药物与临床, 2021, 24(6): 494-497. DOI: 10.14053/j.cnki.ppcr.202106004.

    ZHANG H, LONG C, YANG L, et al. Effect of hydromorphone preconditioning on PI3 K/Akt expression in rats with renal ischemia-reperfusion injury[J]. Pract Pharm Clin Rem, 2021, 24(6): 494-497. DOI: 10.14053/j.cnki.ppcr.202106004.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  181
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回