留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在肾移植领域中的应用进展

任相阁, 翟文生, 李冰. 人工智能在肾移植领域中的应用进展[J]. 器官移植, 2023, 14(4): 505-513. doi: 10.3969/j.issn.1674-7445.2023.04.006
引用本文: 任相阁, 翟文生, 李冰. 人工智能在肾移植领域中的应用进展[J]. 器官移植, 2023, 14(4): 505-513. doi: 10.3969/j.issn.1674-7445.2023.04.006
Ren Xiangge, Zhai Wensheng, Li Bing. Research progress on application of artificial intelligence in the field of kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 505-513. doi: 10.3969/j.issn.1674-7445.2023.04.006
Citation: Ren Xiangge, Zhai Wensheng, Li Bing. Research progress on application of artificial intelligence in the field of kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 505-513. doi: 10.3969/j.issn.1674-7445.2023.04.006

人工智能在肾移植领域中的应用进展

doi: 10.3969/j.issn.1674-7445.2023.04.006
基金项目: 

国家自然科学基金 81873339

国家自然科学基金 82274577

详细信息
    作者简介:
    通讯作者:

    翟文生(ORCID:0000-0002-9112-4599),博士,主任医师,研究方向为中医药防治儿童肾脏疾病,Email:zhws65415@sina.com

  • 中图分类号: R617, TP18

Research progress on application of artificial intelligence in the field of kidney transplantation

More Information
  • 摘要: 近年来,人工智能不断发展,越来越多地应用于医学领域,包括各种疾病的风险预测、诊断和治疗等,提升了疾病的诊疗及管理水平,在医学领域展示出较好的应用前景。人工智能在肾移植领域中的发展也十分迅速,研究者们已经尝试将其应用于肾移植术前评估、术后并发症预测等多个场景,提示人工智能在肾移植领域具有较大的应用前景。本文围绕人工智能在肾移植供受者匹配、供肾功能评估、临床结局预测、术后并发症诊断、免疫抑制药监测管理等方面进行综述,归纳总结人工智能在肾移植领域中的应用进展,并探讨人工智能的局限性,以期为促进人工智能在肾移植领域中的实际应用和推广提供参考。

     

  • 图  1  AI在肾移植中的应用场景

    注:A图为使用机器学习模型挖掘供受者临床数据,生成最优匹配对;B图为使用CNN算法分析肾脏病理图像,完成肾脏结构的识别和分割;C图为使用ANN、决策树、随机森林、XGboost等算法处理供受者临床信息和随访数据,为临床医师提供决策支持;D图为智能设备搭载AI技术,提醒患者及时服药。

    Figure  1.  Application scenarios of AI in the field of kidney transplantation

  • [1] JIANG F, JIANG Y, ZHI H, et al. Artificial intelligence in healthcare: past, present and future[J]. Stroke Vasc Neurol, 2017, 2(4): 230-243. DOI: 10.1136/svn-2017-000101.
    [2] 邵琨, 王祥慧. 2020年肾移植临床国际前沿热点及新进展荟萃[J]. 器官移植, 2021, 12(2): 155-168. DOI: 10.3969/j.issn.1674-7445.2021.02.005.

    SHAO K, WANG XH. Highlights of international frontier hot spots and new progress on renal transplantation in 2020[J]. Organ Transplant, 2021, 12(2): 155-168. DOI: 10.3969/j.issn.1674-7445.2021.02.005.
    [3] LENTINE KL, SMITH JM, HART A, et al. OPTN/SRTR 2020 annual data report: kidney[J]. Am J Transplant, 2022, 22(Suppl 2): 21-136. DOI: 10.1111/ajt.16982.
    [4] SEYAHI N, OZCAN SG. Artificial intelligence and kidney transplantation[J]. World J Transplant, 2021, 11(7): 277-289. DOI: 10.5500/wjt.v11.i7.277.
    [5] COOREY CP, SHARMA A, MULLER S, et al. Prediction modeling-part 2: using machine learning strategies to improve transplantation outcomes[J]. Kidney Int, 2021, 99(4): 817-823. DOI: 10.1016/j.kint.2020.08.026.
    [6] TADDEO M, FLORIDI L. How AI can be a force for good[J]. Science, 2018, 361(6404): 751-752. DOI: 10.1126/science.aat5991.
    [7] GREENER JG, KANDATHIL SM, MOFFAT L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 40-55. DOI: 10.1038/s41580-021-00407-0.
    [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539.
    [9] CHOI RY, COYNER AS, KALPATHY-CRAMER J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14. DOI: 10.1167/tvst.9.2.14.
    [10] BINI SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care?[J]. J Arthroplasty, 2018, 33(8): 2358-2361. DOI: 10.1016/j.arth.2018.02.067.
    [11] RAZZAQ M, CLÉMENT F, YVINEC R. An overview of deep learning applications in precocious puberty and thyroid dysfunction[J]. Front Endocrinol (Lausanne), 2022, 13: 959546. DOI: 10.3389/fendo.2022.959546.
    [12] PLACONA AM, MARTINEZ C, MCGEHEE H, et al. Can donor narratives yield insights? a natural language processing proof of concept to facilitate kidney allocation[J]. Am J Transplant, 2020, 20(4): 1095-1104. DOI: 10.1111/ajt.15705.
    [13] HAMOUDA E, EL-METWALLY S, TAREK M. Ant lion optimization algorithm for kidney exchanges[J]. PLoS One, 2018, 13(5): e0196707. DOI: 10.1371/journal.pone.0196707.
    [14] RASHIDI KHAZAEE P, BAGHERZADEH J, NIAZKHANI Z, et al. A dynamic model for predicting graft function in kidney recipients' upcoming follow up visits: a clinical application of artificial neural network[J]. Int J Med Inform, 2018, 119: 125-133. DOI: 10.1016/j.ijmedinf.2018.09.012.
    [15] VAN LOON E, ZHANG W, COEMANS M, et al. Forecasting of patient-specific kidney transplant function with a sequence-to-sequence deep learning model[J]. JAMA Netw Open, 2021, 4(12): e2141617. DOI: 10.1001/jamanetworkopen.2021.41617.
    [16] IMPROTA G, MAZZELLA V, VECCHIONE D, et al. Fuzzy logic-based clinical decision support system for the evaluation of renal function in post-transplant patients[J]. J Eval Clin Pract, 2020, 26(4): 1224-1234. DOI: 10.1111/jep.13302.
    [17] ACS B, RANTALAINEN M, HARTMAN J. Artificial intelligence as the next step towards precision pathology[J]. J Intern Med, 2020, 288(1): 62-81. DOI: 10.1111/joim.13030.
    [18] XIE Q, FAUST K, VAN OMMEREN R, et al. Deep learning for image analysis: personalizing medicine closer to the point of care[J]. Crit Rev Clin Lab Sci, 2019, 56(1): 61-73. DOI: 10.1080/10408363.2018.1536111.
    [19] MARSH JN, MATLOCK MK, KUDOSE S, et al. Deep learning global glomerulosclerosis in transplant kidney frozen sections[J]. IEEE Trans Med Imaging, 2018, 37(12): 2718-2728. DOI: 10.1109/TMI.2018.2851150.
    [20] HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue[J]. J Am Soc Nephrol, 2019, 30(10): 1968-1979. DOI: 10.1681/ASN.2019020144.
    [21] SALVI M, MOGETTA A, GAMBELLA A, et al. Automated assessment of glomerulosclerosis and tubular atrophy using deep learning[J]. Comput Med Imaging Graph, 2021, 90: 101930. DOI: 10.1016/j.compmedimag.2021.101930.
    [22] YI Z, SALEM F, MENON MC, et al. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies[J]. Kidney Int, 2022, 101(2): 288-298. DOI: 10.1016/j.kint.2021.09.028.
    [23] FARRIS AB, VIZCARRA J, AMGAD M, et al. Image analysis pipeline for renal allograft evaluation and fibrosis quantification[J]. Kidney Int Rep, 2021, 6(7): 1878-1887. DOI: 10.1016/j.ekir.2021.04.019.
    [24] BROWN TS, ELSTER EA, STEVENS K, et al. Bayesian modeling of pretransplant variables accurately predicts kidney graft survival[J]. Am J Nephrol, 2012, 36(6): 561-569. DOI: 10.1159/000345552.
    [25] YOO KD, NOH J, LEE H, et al. A machine learning approach using survival statistics to predict graft survival in kidney transplant recipients: a multicenter cohort study[J]. Sci Rep, 2017, 7(1): 8904. DOI: 10.1038/s41598-017-08008-8.
    [26] BAE S, MASSIE AB, THOMAS AG, et al. Who can tolerate a marginal kidney? predicting survival after deceased donor kidney transplant by donor-recipient combination[J]. Am J Transplant, 2019, 19(2): 425-433. DOI: 10.1111/ajt.14978.
    [27] RAYNAUD M, AUBERT O, DIVARD G, et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study[J]. Lancet Digit Health, 2021, 3(12): e795-e805. DOI: 10.1016/S2589-7500(21)00209-0.
    [28] NAQVI SAA, TENNANKORE K, VINSON A, et al. Predicting kidney graft survival using machine learning methods: prediction model development and feature significance analysis study[J]. J Med Internet Res, 2021, 23(8): e26843. DOI: 10.2196/26843.
    [29] 梁诚, 牛纪平, 满江位, 等. 管周毛细血管损伤在肾移植中作用的研究进展[J]. 器官移植, 2023, 14(1): 147-153. DOI: 10.3969/j.issn.1674-7445.2023.01.020.

    LIANG C, NIU JP, MAN JW, et al. Progress in the role of peritubular capillary injury in kidney transplantation[J]. Organ Transplant, 2023, 14(1): 147-153. DOI: 10.3969/j.issn.1674-7445.2023.01.020.
    [30] KIM YG, CHOI G, GO H, et al. A fully automated system using a convolutional neural network to predict renal allograft rejection: extra-validation with giga-pixel immunostained slides[J]. Sci Rep, 2019, 9(1): 5123. DOI: 10.1038/s41598-019-41479-5.
    [31] ABDELTAWAB H, SHEHATA M, SHALABY A, et al. A novel CNN-based CAD system for early assessment of transplanted kidney dysfunction[J]. Sci Rep, 2019, 9(1): 5948. DOI: 10.1038/s41598-019-42431-3.
    [32] SHEHATA M, SHALABY A, SWITALA AE, et al. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: preliminary results[J]. Med Phys, 2020, 47(6): 2427-2440. DOI: 10.1002/mp.14109.
    [33] FU Q, AGARWAL D, DENG K, et al. An unbiased machine learning exploration reveals gene sets predictive of allograft tolerance after kidney transplantation[J]. Front Immunol, 2021, 12: 695806. DOI: 10.3389/fimmu.2021.695806.
    [34] WANG Y, ZHANG D, HU X. A three-gene peripheral blood potential diagnosis signature for acute rejection in renal transplantation[J]. Front Mol Biosci, 2021, 8: 661661. DOI: 10.3389/fmolb.2021.661661.
    [35] PONTRELLI P, SIMONE S, RASCIO F, et al. Pre-transplant expression of CCR-2 in kidney transplant recipients is associated with the development of delayed graft function[J]. Front Immunol, 2022, 13: 804762. DOI: 10.3389/fimmu.2022.804762.
    [36] KONIECZNY A, STOJANOWSKI J, RYDZYŃSKA K, et al. Artificial intelligence-a tool for risk assessment of delayed-graft function in kidney transplant[J]. J Clin Med, 2021, 10(22): 5244. DOI: 10.3390/jcm10225244.
    [37] JEN KY, ALBAHRA S, YEN F, et al. Automated en masse machine learning model generation shows comparable performance as classic regression models for predicting delayed graft function in renal allografts[J]. Transplantation, 2021, 105(12): 2646-2654. DOI: 10.1097/TP.0000000000003640.
    [38] COSTA SD, DE ANDRADE LGM, BARROSO FVC, et al. The impact of deceased donor maintenance on delayed kidney allograft function: a machine learning analysis[J]. PLoS One, 2020, 15(2): e0228597. DOI: 10.1371/journal.pone.0228597.
    [39] KAWAKITA S, BEAUMONT JL, JUCAUD V, et al. Personalized prediction of delayed graft function for recipients of deceased donor kidney transplants with machine learning[J]. Sci Rep, 2020, 10(1): 18409. DOI: 10.1038/s41598-020-75473-z.
    [40] PENG B, GONG H, TIAN H, et al. The study of the association between immune monitoring and pneumonia in kidney transplant recipients through machine learning models[J]. J Transl Med, 2020, 18(1): 370. DOI: 10.1186/s12967-020-02542-2.
    [41] LUO Y, TANG Z, HU X, et al. Machine learning for the prediction of severe pneumonia during posttransplant hospitalization in recipients of a deceased-donor kidney transplant[J]. Ann Transl Med, 2020, 8(4): 82. DOI: 10.21037/atm.2020.01.09.
    [42] XIA M, YANG H, TONG X, et al. Risk factors for new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis[J]. J Diabetes Investig, 2021, 12(1): 109-122. DOI: 10.1111/jdi.13317.
    [43] KIM JE, PARK SJ, KIM YC, et al. Deep learning-based quantification of visceral fat volumes predicts posttransplant diabetes mellitus in kidney transplant recipients[J]. Front Med (Lausanne), 2021, 8: 632097. DOI: 10.3389/fmed.2021.632097.
    [44] AL-IMAM A, AL-TABBAKH ALI. Predictors of new-onset diabetes after kidney transplantation during 2019-nCoV pandemic: a unison of frequentist inference and narrow AI[J]. Open Access Maced J Med Sci, 2022, 10(B): 180-191. DOI: 10.3889/oamjms.2022.7521.
    [45] 詹世鹏, 马攀, 刘芳. 机器学习在治疗药物监测与个体化用药中的应用[J]. 中国药房, 2023, 34(1): 117-121, 128. DOI: 10.6039/j.issn.1001-0408.2023.01.23.

    ZHAN SP, MA P, LIU F. Application of machine learning in the therapeutic drug monitoring and individual drug therapy[J]. China Pharm, 2023, 34(1): 117-121, 128. DOI: 10.6039/j.issn.1001-0408.2023.01.23.
    [46] MAO J, CHEN Y, XU L, et al. Applying machine learning to the pharmacokinetic modeling of cyclosporine in adult renal transplant recipients: a multi-method comparison[J]. Front Pharmacol, 2022, 13: 1016399. DOI: 10.3389/fphar.2022.1016399.
    [47] WOILLARD JB, LABRIFFE M, DEBORD J, et al. Tacrolimus exposure prediction using machine learning[J]. Clin Pharmacol Ther, 2021, 110(2): 361-369. DOI: 10.1002/cpt.2123.
    [48] LABRIFFE M, WOILLARD JB, DEBORD J, et al. Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles[J]. CPT Pharmacometrics Syst Pharmacol, 2022, 11(8): 1018-1028. DOI: 10.1002/psp4.12810.
    [49] 彭怀东, 杨灿邦, 张磊, 等. 多重用药的肾移植受者用药现状与药学服务需求调查[J]. 中国医院药学杂志, 2022, 42(12): 1276-1281, 1292. DOI: 10.13286/j.1001-5213.2022.12.19.

    PENG HD, YANG CB, ZHANG L, et al. A questionnaire for prescription pattern and pharmaceutical care needs on renal transplant recipients with polypharmacy[J]. Chin J Hosp Pharm, 2022, 42(12): 1276-1281, 1292. DOI: 10.13286/j.1001-5213.2022.12.19.
    [50] MCGILLICUDDY J, CHANDLER J, SOX L, et al. "Smartphone medication adherence saves kidneys" for kidney transplantation recipients: protocol for a randomized controlled trial[J]. JMIR Res Protoc, 2019, 8(6): e13351. DOI: 10.2196/13351.
    [51] FLEMING JN, GEBREGZIABHER M, POSADAS A, et al. Impact of a pharmacist-led, mHealth-based intervention on tacrolimus trough variability in kidney transplant recipients: a report from the TRANSAFE Rx randomized controlled trial[J]. Am J Health Syst Pharm, 2021, 78(14): 1287-1293. DOI: 10.1093/ajhp/zxab157.
    [52] HAN A, MIN SI, AHN S, et al. Mobile medication manager application to improve adherence with immunosuppressive therapy in renal transplant recipients: a randomized controlled trial[J]. PLoS One, 2019, 14(11): e0224595. DOI: 10.1371/journal.pone.0224595.
    [53] MAGRABI F, AMMENWERTH E, MCNAIR JB, et al. Artificial intelligence in clinical decision support: challenges for evaluating AI and practical implications[J]. Yearb Med Inform, 2019, 28(1): 128-134. DOI: 10.1055/s-0039-1677903.
    [54] MAHADEVAIAH G, RV P, BERMEJO I, et al. Artificial intelligence-based clinical decision support in modern medical physics: selection, acceptance, commissioning, and quality assurance[J]. Med Phys, 2020, 47(5): e228-e235. DOI: 10.1002/mp.13562.
    [55] GIANFRANCESCO MA, TAMANG S, YAZDANY J, et al. Potential biases in machine learning algorithms using electronic health record data[J]. JAMA Intern Med, 2018, 178(11): 1544-1547. DOI: 10.1001/jamainternmed.2018.3763.
    [56] KELLY CJ, KARTHIKESALINGAM A, SULEYMAN M, et al. Key challenges for delivering clinical impact with artificial intelligence[J]. BMC Med, 2019, 17(1): 195. DOI: 10.1186/s12916-019-1426-2.
    [57] BRIGANTI G, LE MOINE O. Artificial intelligence in medicine: today and tomorrow[J]. Front Med (Lausanne), 2020, 7: 27. DOI: 10.3389/fmed.2020.00027.
    [58] 张姝艳, 皮婷婷. 医疗领域中人工智能应用的可解释性困境与治理[J]. 医学与哲学, 2023, 44(3): 25-29, 35. DOI: 10.12014/j.issn.1002-0772.2023.03.06.

    ZHANG SY, PI TT. Interpretability dilemma and governance of artificial intelligence application in medical field[J]. Med Philos, 2023, 44(3): 25-29, 35. DOI: 10.12014/j.issn.1002-0772.2023.03.06.
    [59] 王涵, 陈敏. 医疗人工智能政策法律分析及对策研究[J]. 中国数字医学, 2021, 16(12): 73-77. DOI: 10.3969/j.issn.1673-7571.2021.12.017.

    WANG H, CHEN M. Policy and law analysis and countermeasures research of medical artificial intelligence[J]. China Digit Med, 2021, 16(12): 73-77. DOI: 10.3969/j.issn.1673-7571.2021.12.017.
    [60] 郑志峰. 诊疗人工智能的医疗损害责任[J]. 中国法学, 2023(1): 203-221. DOI: 10.14111/j.cnki.zgfx.2023.01.011.

    ZHENG ZF. Liability for medical damage caused by diagnostic and therapeutic artificial intelligence[J]. China Legal Sci, 2023(1): 203-221. DOI: 10.14111/j.cnki.zgfx.2023.01.011.
  • 加载中
图(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  64
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回