Volume 8 Issue 5
Sep.  2017
Turn off MathJax
Article Contents

doi: 10.3969/j.issn.1674-7445.2017.05.001
  • Received Date: 2017-08-01
    Available Online: 2021-01-19
  • Publish Date: 2017-09-15
  • loading
  • [1]
    Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2015 annual data report: liver[J]. Am J Transplant, 2017, 17 (Suppl 1): 174-251. DOI: 10.1111/ajt.14126.
    [2]
    Wang Y, Nicolas CT, Chen HS, et al. Recent advances in decellularization and recellularization for tissue-engineered liver grafts[J]. Cells Tissues Organs, 2017, 203(4): 203-214. DOI: 10.1159/000452761.
    [3]
    Caralt M. Present and future of regenerative medicine: liver transplantation[J]. Transplant Proc, 2015, 47(8): 2377-2379. DOI: 10.1016/j.transproceed.2015.08.029.
    [4]
    Mazza G, Rombouts K, Rennie Hall A, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation[J]. Sci Rep, 2015, 5: 13079. DOI: 10.1038/srep13079.
    [5]
    Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid[J]. Hepatology, 2011, 53(2): 604-617. DOI: 10.1002/hep.24067.
    [6]
    Hassanein W, Uluer MC, Langford J, et al. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold[J]. Organogenesis, 2017, 13(1): 16-27. DOI: 10.1080/15476278.2016.1276146.
    [7]
    Ko IK, Peng L, Peloso A, et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature[J]. Biomaterials, 2015, 40: 72-79. DOI: 10.1016/j.biomaterials.2014.11.027.
    [8]
    Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole-organ regenerative medicine approach for liver replacement[J]. Tissue Eng Part C Methods, 2011, 17(6): 677-686. DOI: 10.1089/ten.tec.2010.0698.
    [9]
    Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix[J]. Nat Med, 2010, 16(7): 814-820. DOI: 10.1038/nm.2170.
    [10]
    Yagi H, Fukumitsu K, Fukuda K, et al. Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach[J]. Cell Transplant, 2013, 22(2): 231-242. DOI: 10.3727/096368912X654939.
    [11]
    Lin P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering[J]. Tissue Eng, 2004, 10(7/8): 1046-1053. DOI: 10.1089/ten.2004.10.1046
    [12]
    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243. DOI: 10.1016/j.biomaterials.2011.01.057.
    [13]
    Conklin BS, Wu H, Lin PH, et al. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft[J]. Artif Organs, 2004, 28(7): 668-675. DOI: 10.1111/j.1525-1594.2004.00062.x.
    [14]
    Nakamura S, Ijima H. Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture[J]. J Biosci Bioeng, 2013, 116(6): 746-753. DOI: 10.1016/j.jbiosc.2013.05.031.
    [15]
    Uygun BE, Yarmush ML, Uygun K. Application of whole-organ tissue engineering in hepatology[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(12): 738-744. DOI: 10.1038/nrgastro.2012.140.
    [16]
    Verhulsel M, Vignes M, Descroix S, et al. A review of microfabrication and hydrogel engineering for micro-organs on chips[J]. Biomaterials, 2014, 35(6): 1816-1832. DOI: 10.1016/j.biomaterials.2013.11.021.
    [17]
    Yamada M, Utoh R, Ohashi K, et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions[J]. Biomaterials, 2012, 33(33):8304-8315. DOI: 10.1016/j.biomaterials.2012.07.068.
    [18]
    Rennert K, Steinborn S, Gröger M, et al. A microfluidically perfused three dimensional human liver model[J]. Biomaterials, 2015, 71:119-131. DOI: 10.1016/j.biomaterials.2015.08.043.
    [19]
    Chen AA, Thomas DK, Ong LL, et al. Humanized mice with ectopic artificial liver tissues[J]. Proc Natl Acad Sci USA, 2011, 108(29): 11842-11847. DOI: 10.1073/pnas.1101791108.
    [20]
    Stevens KR, Scull MA, Ramanan V, et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease[J]. Sci Transl Med, 2017, 9(399): eaah5505. DOI: 10.1126/scitranslmed.aah5505.
    [21]
    Coghlan A. 3D printer makes tiniest human liver ever[EB/OL]. (2013-04-23). https://www.newscientist.com/article/dn23419-3d-printer-makes-tiniest-human-liver-ever.html.
    [22]
    Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. DOI: 10.1016/j.stem.2013.04.009.
    [23]
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. DOI: 10.1016/j.cell.2007.11.019.
    [24]
    Matsumoto K, Yoshitomi H, Rossant J, et al. Liver organogenesis promoted by endothelial cells prior to vascular function[J]. Science, 2001, 294(5542): 559-563. DOI: 10.1126/science.1063889.
    [25]
    Korzh S, Pan X, Garcia-Lecea M, et al. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish[J]. BMC Dev Biol, 2008, 8:84. DOI: 10.1186/1471-213X-8-84.
    [26]
    Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. DOI: 10.1038/nature12271.
    [27]
    Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation[J]. Cell Stem Cell, 2015, 16(5): 556-565. DOI: 10.1016/j.stem.2015.03.004.
    [28]
    Guye P, Ebrahimkhani MR, Kipniss N, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using GATA6[J]. Nat Commun, 2016, 7:10243. DOI: 10.1038/ncomms10243.
    [29]
    Ozair MZ, Noggle S, Warmflash A, et al. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism[J]. Stem Cells, 2013, 31(1): 35-47. DOI: 10.1002/stem.1246.
    [30]
    Peterkin T, Gibson A, Patient R. GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation[J]. EMBO J, 2003, 22(16): 4260-4273. DOI: 10.1093/emboj/cdg400.
    [31]
    Rhim JA, Sandgren EP, Palmiter RD, et al. Complete reconstitution of mouse liver with xenogeneic hepatocytes[J]. Proc Natl Acad Sci USA, 1995, 92(11): 4942-4946. doi: 10.1073/pnas.92.11.4942
    [32]
    Dandri M, Burda MR, Török E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus[J]. Hepatology, 2001, 33(4): 981-988. DOI: 10.1053/jhep.2001.23314.
    [33]
    Tateno C, Yoshizane Y, Saito N, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs[J]. Am J Pathol, 2004, 165(3): 901-912. DOI: 10.1016/S0002-9440(10)63352-4.
    [34]
    Meuleman P, Libbrecht L, De Vos R, et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera[J]. Hepatology, 2005, 41(4): 847-856. DOI: 10.1002/hep.20657.
    [35]
    Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice[J]. Nat Biotechnol, 2007, 25(8): 903-910. DOI: 10.1038/nbt1326.
    [36]
    Bissig KD, Le TT, Woods NB, et al. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model[J]. Proc Natl Acad Sci USA, 2007, 104(51): 20507-20511. DOI: 10.1073/pnas.0710528105.
    [37]
    Rashid T, Kobayashi T, Nakauchi H. Revisiting the flight of icarus: making human organs from PSCs with large animal chimeras[J]. Cell Stem Cell, 2014, 15(4): 406-409. DOI: 10.1016/j.stem.2014.09.013.
    [38]
    Kim H, Kim JS. A guide to genome engineering with programmable nucleases[J]. Nat Rev Genet, 2014, 15(5): 321-334. DOI: 10.1038/nrg3686.
    [39]
    Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. DOI: 10.1016/j.cell.2014.05.010.
    [40]
    Yang L, Güell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. DOI: 10.1126/science.aad1191.
    [41]
    Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2): 288-299. DOI: 10.1002/path.4635.
    [42]
    Shaw D, Dondorp W, Geijsen N, et al. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs?[J]. J Med Ethics, 2015, 41(12): 970-974. DOI: 10.1136/medethics-2014-102224.
    [43]
    Wu J, Platero-Luengo A, Sakurai M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3): 473-486. DOI: 10.1016/j.cell.2016.12.036.
    [44]
    Xiang AP, Mao FF, Li WQ, et al. Extensive contribution of embryonic stem cells to the development of an evolutionarily divergent host[J]. Hum Mol Genet, 2008, 17(1): 27-37. DOI: 10.1093/hmg/ddm282.
    [45]
    Li W, Huang L, Lin W, et al. Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells[J]. Biomaterials, 2015, 39: 75-84. DOI: 10.1016/j.biomaterials.2014.10.056.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (297) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return