Volume 8 Issue 2
Mar.  2017
Turn off MathJax
Article Contents

doi: 10.3969/j.issn.1674-7445.2017.02.014
  • Received Date: 2017-01-03
    Available Online: 2021-01-19
  • Publish Date: 2017-03-15
  • loading
  • [1]
    Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2):288-299. DOI: 10.1002/path.4635.
    [2]
    Vadori M, Cozzi E. The immunological barriers to xenotransplantation[J]. Tissue Antigens, 2015, 86(4):239-253. DOI: 10.1111/tan.12669.
    [3]
    Raben N, Nagaraju K, Lee E, et al. Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type Ⅱ[J]. J Biol Chem, 1998, 273(30):19086-19092. doi: 10.1074/jbc.273.30.19086
    [4]
    Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6):507-512. doi: 10.1038/nrg1619
    [5]
    Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection[J]. Proc Natl Acad Sci U S A, 1994, 91(23):11153-11157. doi: 10.1073/pnas.91.23.11153
    [6]
    Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans[J]. Nat Med, 1995, 1(9):964-966. doi: 10.1038/nm0995-964
    [7]
    Osman N, McKenzie IF, Ostenried K, et al. Combined transgenic expression of alpha-galactosidase and alpha1, 2-fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha (1, 3) Gal[J]. Proc Natl Acad Sci U S A, 1997, 94(26):14677-14682. doi: 10.1073/pnas.94.26.14677
    [8]
    Costa C, Zhao L, Burton WV, et al. Expression of the human alpha1, 2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis[J]. FASEB J, 1999, 13(13):1762-1773. https://www.ncbi.nlm.nih.gov/pubmed/%20%20%20%20%20%2010506579
    [9]
    Miyagawa S, Murakami H, Takahagi Y, et al. Remodeling of the major pig xenoantigen by N-acetylglucosaminyltransferase Ⅲ in transgenic pig[J]. J Biol Chem, 2001, 276(42):39310-39319. doi: 10.1074/jbc.M104359200
    [10]
    Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557):1089-1092. doi: 10.1126/science.1068228
    [11]
    Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1, 3-galactosyltransferase-deficient pigs[J]. Science, 2003, 299(5605):411-414. doi: 10.1126/science.1078942
    [12]
    Klose R, Kemter E, Bedke T, et al. Expression of biologically active human TRAIL in transgenic pigs[J]. Transplantation, 2005, 80(2):222-230. doi: 10.1097/01.TP.0000164817.59006.C2
    [13]
    Wu G, Pfeiffer S, Schröder C, et al. Coagulation cascade activation triggers early failure of pig hearts expressing human complement regulatory genes[J]. Xenotransplantation, 2007, 14(1):34-47. doi: 10.1111/xen.2007.14.issue-1
    [14]
    Phelps CJ, Ball SF, Vaught TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6):477-485. DOI: 10.1111/j.1399-3089.2009.00533.x.
    [15]
    Petersen B, Ramackers W, Tiede A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6):486-495. DOI: 10.1111/j.1399-3089.2009.00537.x.
    [16]
    Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity[J]. Transplantation, 2009, 87(1):35-43. DOI: 10.1097/TP.0b013e318191c784.
    [17]
    Oropeza M, Petersen B, Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6):522-534. DOI: 10.1111/j.1399-3089.2009.00556.x.
    [18]
    Yazaki S, Iwamoto M, Onishi A, et al. Successful cross-breeding of cloned pigs expressing endo-beta-galactosidase C and human decay accelerating factor[J]. Xenotransplantation, 2009, 16(6):511-521. DOI: 10.1111/j.1399-3089.2009.00549.x.
    [19]
    Hara H, Koike N, Long C, et al. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs[J]. Invest Ophthalmol Vis Sci, 2011, 52(8):5278-5286. DOI: 10.1167/iovs.10-6947.
    [20]
    Shudo K, Kinoshita K, Imamura R, et al. The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity[J]. Eur J Immunol, 2001, 31(8):2504-2511. doi: 10.1002/(ISSN)1521-4141
    [21]
    Cho B, Koo OJ, Hwang JI, et al. Generation of soluble human tumor necrosis factor-α receptor 1-Fc transgenic pig[J]. Transplantation, 2011, 92(2):139-147. DOI: 10.1097/TP.0b013e3182215e7e.
    [22]
    Yeom HJ, Koo OJ, Yang J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10):e46646. DOI: 10.1371/journal.pone.0046646.
    [23]
    Wheeler DG, Joseph ME, Mahamud SD, et al. Transgenic swine: expression of human CD39 protects against myocardial injury[J]. J Mol Cell Cardiol, 2012, 52(5):958-961. DOI: 10.1016/j.yjmcc.2012.01.002. Epub 2012 Jan 12.
    [24]
    Klymiuk N, van Buerck L, Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immunerejection in humanized mice[J]. Diabetes, 2012, 61(6):1527-1532. DOI: 10.2337/db11-1325.
    [25]
    Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7):397-405. DOI: 10.1016/j.tibtech.2013.04.004.
    [26]
    Orlando SJ, Santiago Y, DeKelver RC, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology[J]. Nucleic Acids Res, 2010, 38(15):e152. DOI: 10.1093/nar/gkq512.
    [27]
    Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2):757-761. DOI: 10.1534/genetics.110.120717.
    [28]
    Lutz AJ, Li P, Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce thehumoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1):27-35. DOI: 10.1111/xen.12019.
    [29]
    Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated gene knockout in livestock[J]. Proc Natl Acad Sci U S A, 2012, 109(43):17382-17387. DOI: 10.1073/pnas.1211446109.
    [30]
    Xin J, Yang H, Fan N, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One, 2013, 8(12):e84250. DOI: 10.1371/journal.pone.0084250.
    [31]
    Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. DOI: 10.1038/nature10886.
    [32]
    Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology[J]. Nat Methods, 2013, 10(10):957-963. DOI: 10.1038/nmeth.2649.
    [33]
    Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity[J]. Nature, 2010, 463(7280):568-571. DOI: 10.1038/nature08703.
    [34]
    Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. DOI: 10.1126/science.1225829.
    [35]
    Li P, Estrada JL, Burlak C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation, 2015, 22(1):20-31. DOI: 10.1111/xen.12131.
    [36]
    Reyes LM, Estrada JL, Wang ZY, et al. Creating class Ⅰ MHC-null pigs using guide RNA and the Cas9 endonuclease[J]. J Immunol, 2014, 193(11):5751-5757. DOI: 10.4049/jimmunol.1402059.
    [37]
    Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2genes[J]. Xenotransplantation, 2015, 22(3):194-202. DOI: 10.1111/xen.12161.
    [38]
    Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040):307. DOI: 10.1126/science.1207773.
    [39]
    Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. DOI: 10.1038/nbt.2808.
    [40]
    Ramirez CL, Certo MT, Mussolino C, et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects[J]. Nucleic Acids Res, 2012, 40(12):5560-5568. DOI: 10.1093/nar/gks179.
    [41]
    Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5):720-723. DOI: 10.1038/cr.2013.46.
    [42]
    Shen B, Zhang J, Wu H, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting[J]. Cell Res, 2013, 23(5):720-723. DOI: 10.1038/cr.2013.46
    [43]
    Zhang H, Zhang J, Wei P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnol J, 2014, 12(6):797-807. DOI: 10.1111/pbi.12200.
    [44]
    Veres A, Gosis BS, Ding Q, et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing[J]. Cell Stem Cell, 2014, 15(1):27-30. DOI: 10.1016/j.stem.2014.04.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (102) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return