留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年国内肾移植文献盘点

曾心悦, 周王天旭, 孙启全. 2023年国内肾移植文献盘点[J]. 器官移植, 2024, 15(3): 383-389. doi: 10.3969/j.issn.1674-7445.2024059
引用本文: 曾心悦, 周王天旭, 孙启全. 2023年国内肾移植文献盘点[J]. 器官移植, 2024, 15(3): 383-389. doi: 10.3969/j.issn.1674-7445.2024059
Zeng Xinyue, Zhou Wangtianxu, Sun Qiquan. Research progress on domestic kidney transplantation of 2023[J]. ORGAN TRANSPLANTATION, 2024, 15(3): 383-389. doi: 10.3969/j.issn.1674-7445.2024059
Citation: Zeng Xinyue, Zhou Wangtianxu, Sun Qiquan. Research progress on domestic kidney transplantation of 2023[J]. ORGAN TRANSPLANTATION, 2024, 15(3): 383-389. doi: 10.3969/j.issn.1674-7445.2024059

2023年国内肾移植文献盘点

doi: 10.3969/j.issn.1674-7445.2024059
基金项目: 国家自然科学基金(82270783、82271805、82100797、82200843);广东省自然科学基金(2021A1515110434);广州市科技计划项目(2023A04J0498)
详细信息
    作者简介:
    通讯作者:

    孙启全(ORCID 0000-0002-7296-316X),博士,主任医师,研究方向为肾移植相关疾病,Email:sunqiq@mail.sysu.edu.cn

  • 中图分类号: R617, R692

Research progress on domestic kidney transplantation of 2023

More Information
  • 摘要: 肾移植手术在解决终末期肾病的问题上取得巨大成功,但在术后依然面临着一系列复杂而棘手的挑战,如感染、排斥反应、缺血-再灌注损伤和慢性移植肾失功等。随着科技发展,生物材料、基因测序等新兴技术的蓬勃发展,我国的研究者们在肾移植领域为解决这些问题展开了一系列引人瞩目的研究。2023年,我国肾移植研究不仅关注于解决上述挑战,更着眼于拓展新的技术和理念,推动肾移植事业走向更为辉煌的未来。本文将系统综述我国研究团队在2023年在肾移植领域取得的学术成果,涵盖基础与临床研究的前沿,以及新兴技术的应用,旨在以本土化视角,为肾移植领域的重大临床问题提供新的思路和策略,推动我国肾移植事业迈向更高峰。

     

  • [1] HARIHARAN S, ISRANI AK, DANOVITCH G. Long-term survival after kidney transplantation[J]. N Engl J Med, 2021, 385(8): 729-743. DOI: 10.1056/NEJMra2014530.
    [2] ZHAO H, ALAM A, SOO AP, et al. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond[J]. EBioMedicine, 2018, 28: 31-42. DOI: 10.1016/j.ebiom.2018.01.025.
    [3] ZHU J, XIANG X, HU X, et al. miR-147 represses NDUFA4, inducing mitochondrial dysfunction and tubular damage in cold storage kidney transplantation[J]. J Am Soc Nephrol, 2023, 34(8): 1381-1397. DOI: 10.1681/ASN.0000000000000154.
    [4] SHI L, SONG Z, LI Y, et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis[J]. Am J Transplant, 2023, 23(1): 11-25. DOI: 10.1016/j.ajt.2022.09.003.
    [5] LI X, PENG X, ZHOU X, et al. Small extracellular vesicles delivering lncRNA WAC-AS1 aggravate renal allograft ischemia-reperfusion injury by inducing ferroptosis propagation[J]. Cell Death Differ, 2023, 30(9): 2167-2186. DOI: 10.1038/s41418-023-01198-x.
    [6] YANG W, LI X, HE L, et al. Empagliflozin improves renal ischemia-reperfusion injury by reducing inflammation and enhancing mitochondrial fusion through AMPK-OPA1 pathway promotion[J]. Cell Mol Biol Lett, 2023, 28(1): 42. DOI: 10.1186/s11658-023-00457-6.
    [7] SU L, ZHANG J, GOMEZ H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414. DOI: 10.1080/15548627.2022.2084862.
    [8] CHEN RY, LI DW, XIE H, et al. Gene signature and prediction model of the mitophagy-associated immune microenvironment in renal ischemia-reperfusion injury[J]. Front Immunol, 2023, 14: 1117297. DOI: 10.3389/fimmu.2023.1117297.
    [9] BERTAINA A, GRIMM PC, WEINBERG K, et al. Sequential stem cell-kidney transplantation in Schimke immuno-osseous dysplasia[J]. N Engl J Med, 2022, 386(24): 2295-2302. DOI: 10.1056/NEJMoa2117028.
    [10] SCHAUB S, HIRSCH HH, DICKENMANN M, et al. Reducing immunosuppression preserves allograft function in presumptive and definitive polyomavirus-associated nephropathy[J]. Am J Transplant, 2010, 10(12): 2615-2623. DOI: 10.1111/j.1600-6143.2010.03310.x.
    [11] LIU N, GU C, YANG Y, et al. Establishment and characterization of a novel reverse genetic system of BK polyomavirus[J]. J Med Virol, 2023, 95(8): e28995. DOI: 10.1002/jmv.28995.
    [12] YANG F, CHEN X, ZHANG H, et al. Single-cell transcriptome identifies the renal cell type tropism of human BK polyomavirus[J]. Int J Mol Sci, 2023, 24(2): 1330. DOI: 10.3390/ijms24021330.
    [13] LI D, REN Y, CHEN R, et al. Label-free MXene-assisted field effect transistor for the determination of IL-6 in patients with kidney transplantation infection[J]. Mikrochim Acta, 2023, 190(8): 284. DOI: 10.1007/s00604-023-05814-y.
    [14] MADHVAPATHY SR, WANG JJ, WANG H, et al. Implantable bioelectronic systems for early detection of kidney transplant rejection[J]. Science, 2023, 381(6662): 1105-1112. DOI: 10.1126/science.adh7726.
    [15] WANG Y, LIN X, WANG C, et al. Identification of PDCD1 as a potential biomarker in acute rejection after kidney transplantation via comprehensive bioinformatic analysis[J]. Front Immunol, 2023, 13: 1076546. DOI: 10.3389/fimmu.2022.1076546.
    [16] ZHANG Z, QIN Y, WANG Y, et al. Integrated analysis of cell-specific gene expression in peripheral blood using ISG15 as a marker of rejection in kidney transplantation[J]. Front Immunol, 2023, 14: 1153940. DOI: 10.3389/fimmu.2023.1153940.
    [17] LAI X, ZHENG X, MATHEW JM, et al. Tackling chronic kidney transplant rejection: challenges and promises[J]. Front Immunol, 2021, 12: 661643. DOI: 10.3389/fimmu.2021.661643.
    [18] LI J, WANG J, PAN T, et al. USP25 deficiency promotes T cell dysfunction and transplant acceptance via mitochondrial dynamics[J]. Int Immunopharmacol, 2023, 117: 109917. DOI: 10.1016/j.intimp.2023.109917.
    [19] ZHANG Y, HE J, YANG Z, et al. Preventative effect of TSPO ligands on mixed antibody-mediated rejection through a mitochondria-mediated metabolic disorder[J]. J Transl Med, 2023, 21(1): 295. DOI: 10.1186/s12967-023-04134-2.
    [20] GHONGE NP, MOHAN M, KASHYAP V, et al. Renal allograft dysfunction: evaluation with shear-wave sonoelastography[J]. Radiology, 2018, 288(1): 146-152. DOI: 10.1148/radiol.2018170577.
    [21] ZHANG J, ZHANG Y, FENG D, et al. Disruption of RCAN1.4 expression mediated by YY1/HDAC2 modulates chronic renal allograft interstitial fibrosis[J]. Cell Death Discov, 2023, 9(1): 271. DOI: 10.1038/s41420-023-01574-z.
    [22] ZHANG J, XIE W, NI B, et al. NSD2 modulates Drp1-mediated mitochondrial fission in chronic renal allograft interstitial fibrosis by methylating STAT1[J]. Pharmacol Res, 2024, 200: 107051. DOI: 10.1016/j.phrs.2023.107051.
    [23] ZHANG YH, LIU B, MENG Q, et al. Targeted changes in blood lipids improves fibrosis in renal allografts[J]. Lipids Health Dis, 2023, 22(1): 215. DOI: 10.1186/s12944-023-01978-x.
    [24] CHE YJ, REN XH, WANG ZW, et al. Lymph-node-targeted drug delivery for effective immunomodulation to prolong the long-term survival after heart transplantation[J]. Adv Mater, 2023, 35(16): e2207227. DOI: 10.1002/adma.202207227.
    [25] PAN Q, YOU Y, WANG X, et al. The impact of preformed and de novo HLA-DP antibodies in renal transplantation, a meta-analysis[J]. HLA, 2023, 101(2): 115-123. DOI: 10.1111/tan.14879.
    [26] GUO Z, ZHAO D, SA R, et al. A modified perioperative regimen for deceased donor kidney transplantation in presensitized recipients without prior desensitization therapy[J]. Front Immunol, 2023, 14: 1223567. DOI: 10.3389/fimmu.2023.1223567.
    [27] ZHU L, GUO Z, ZHAO D, et al. Case report: daratumumab for treatment of refractory late or chronic active antibody-mediated rejection in renal allograft recipients with high levels of de novo donor-specific antibodies[J]. Front Immunol, 2023, 13: 1087597. DOI: 10.3389/fimmu.2022.1087597.
    [28] ZHANG L, ZOU H, LU X, et al. Porcine anti-human lymphocyte immunoglobulin depletes the lymphocyte population to promote successful kidney transplantation[J]. Front Immunol, 2023, 14: 1124790. DOI: 10.3389/fimmu.2023.1124790.
    [29] LI Z, LU Z, HU C, et al. A machine learning analysis of prognostic genes associated with allograft tolerance after renal transplantation[J]. Cell Transplant, 2023, 32: 9636897231195116. DOI: 10.1177/09636897231195116.
    [30] ZHANG D, YE Y, HU X. A non-invasive piTreg-related gene signature for spontaneous tolerance in renal transplantation[J]. Gene, 2023, 848: 146901. DOI: 10.1016/j.gene.2022.146901.
    [31] WANG Y, YAN S, LIU Y, et al. Dynamic viral integration patterns actively participate in the progression of BK polyomavirus-associated diseases after renal transplantation[J]. Am J Transplant, 2023, 23(11): 1694-1708. DOI: 10.1016/j.ajt.2023.07.014.
    [32] ZHONG C, CHEN J, YAN Z, et al. Therapeutic strategies against BK polyomavirus infection in kidney transplant recipients: systematic review and meta-analysis[J]. Transpl Immunol, 2023, 81: 101953. DOI: 10.1016/j.trim.2023.101953.
    [33] WANG Q, LIAO G, XIA Q, et al. Safety and effectiveness of tigecycline combination therapy in renal transplant patients with infection due to carbapenem-resistant gram-negative bacteria[J]. Front Cell Infect Microbiol, 2023, 13: 1215288. DOI: 10.3389/fcimb.2023.1215288.
    [34] YANG D, WANG Y, ZHUANG B, et al. Nomogram based on high-frequency shear wave elastography (SWE) to evaluate chronic changes after kidney transplantation[J]. Eur Radiol, 2023, 33(2): 763-773. DOI: 10.1007/s00330-022-09054-1.
    [35] CAO Z, JIANG H, ZHAO C, et al. Up-regulation of PRKDC was associated with poor renal dysfunction after renal transplantation: a multi-centre analysis[J]. J Cell Mol Med, 2023, 27(10): 1362-1372. DOI: 10.1111/jcmm.17737.
    [36] YAN J, YANG X, WANG J, et al. Metabolic risk profile and graft function deterioration 2 years after kidney transplant[J]. JAMA Netw Open, 2023, 6(12): e2349538. DOI: 10.1001/jamanetworkopen.2023.49538.
    [37] BAI YJ, LI YM, HU SM, et al. Vitamin D supplementation reduced blood inflammatory cytokines expression and improved graft function in kidney transplant recipients[J]. Front Immunol, 2023, 14: 1152295. DOI: 10.3389/fimmu.2023.1152295.
    [38] LI Y, BAI Y, ZHANG H, et al. Decreased expression of ADAM10 on monocytes is associated with chronic allograft dysfunction in kidney transplant recipients[J]. Int Immunopharmacol, 2023, 115: 109710. DOI: 10.1016/j.intimp.2023.109710.
    [39] TIAN X, JI B, NIU X, et al. Efficacy and safety of low-dose aspirin on preventing transplant renal artery stenosis: a prospective randomized controlled trial[J]. Chin Med J (Engl), 2023, 136(5): 541-549. DOI: 10.1097/CM9.0000000000002574.
    [40] LI Y, TANG Y, LIN T, et al. Risk factors and outcomes of IgA nephropathy recurrence after kidney transplantation: a systematic review and meta-analysis[J]. Front Immunol, 2023, 14: 1277017. DOI: 10.3389/fimmu.2023.1277017.
    [41] TEJADA S, MARTINEZ-REVIEJO R, NOGUEIRA TA, et al. The effect of sex inequality on solid organ transplantation: a systematic review and meta-analysis[J]. Eur J Intern Med, 2023, 109: 58-67. DOI: 10.1016/j.ejim.2022.12.009.
    [42] ZHANG Q, SU X, LIU L, et al. The outcome of transplanting kidneys from very small pediatric deceased donors[J]. Transplantation, 2023, 107(7): 1564-1572. DOI: 10.1097/TP.0000000000004534.
    [43] YIN S, WU L, ZHANG F, et al. Expanding the donor pool: kidney transplantation from serum HBV DNA or HBeAg-positive donors to HBsAg-negative recipients[J]. Liver Int, 2023, 43(11): 2415-2424. DOI: 10.1111/liv.15703.
    [44] LIN X, LIU X, WU X, et al. Wide-spectrum antibiotic prophylaxis guarantees optimal outcomes in drowned donor kidney transplantation[J]. Expert Rev Anti Infect Ther, 2023, 21(2): 203-211. DOI: 10.1080/14787210.2023.2163237.
  • 加载中
图(1)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  79
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-05-07

目录

    /

    返回文章
    返回