留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异种肾移植:生理学研究的现状及发展趋势

宋佳华, 余一凡, 邓文艺, 等. 异种肾移植:生理学研究的现状及发展趋势[J]. 器官移植, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148
引用本文: 宋佳华, 余一凡, 邓文艺, 等. 异种肾移植:生理学研究的现状及发展趋势[J]. 器官移植, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148
Song Jiahua, Yu Yifan, Deng Wenyi, et al. Kidney xenotransplantation: status quo and development trend of physiological research[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148
Citation: Song Jiahua, Yu Yifan, Deng Wenyi, et al. Kidney xenotransplantation: status quo and development trend of physiological research[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 898-904. doi: 10.3969/j.issn.1674-7445.2023148

异种肾移植:生理学研究的现状及发展趋势

doi: 10.3969/j.issn.1674-7445.2023148
基金项目: 国家自然科学基金(82260154);海南省科技厅重大科技计划项目(ZDKT2019009);海南省科技厅自然科学基金(820RC766);海南医学院2021年度研究生创新科研课题(HYYS2021B0)
详细信息
    作者简介:
    通讯作者:

    王毅(ORCID:0000-0001-7152-0757),医学博士,二级教授、一级主任医师、博士研究生导师,研究方向为异种移植,Email:wayne0108@126.com

  • 中图分类号: R617, Q45

Kidney xenotransplantation: status quo and development trend of physiological research

More Information
  • 摘要: 器官移植是治疗各类终末期器官疾病最有效的手段,为了解决器官移植中供者短缺的问题,人们开始探究异种移植。目前人们普遍关注异种移植排斥反应及病毒感染相关的问题,在异种肾移植生理学方面的研究较少。肾脏通过产生促红细胞生成素(EPO)、肾素,激活维生素D来执行内分泌功能。虽然这些途径在同种移植中通常保存良好,但物种特有的差异,特别是猪和非人灵长类动物之间的差异,仍然可能会影响移植器官的生理机能。本文尝试从猪与人的EPO、肾素-血管紧张素-醛固酮系统(RAAS)、有活性的维生素D3等在异种移植后的作用变化等方面进行阐述,旨在为异种移植亚临床研究提供参考。

     

  • [1] MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1889-1898. DOI: 10.1056/NEJMoa2120238.
    [2] PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [3] COOPER DKC, PIERSON RN 3 RD. Milestones on the path to clinical pig organ xenotransplantation[J]. Am J Transplant, 2023, 23(3): 326-335. DOI: 10.1016/j.ajt.2022.12.023.
    [4] HIRANO I, SUZUKI N. The neural crest as the first production site of the erythroid growth factor erythropoietin[J]. Front Cell Dev Biol, 2019, 7: 105. DOI: 10.3389/fcell.2019.00105.
    [5] TSIFTSOGLOU AS. Erythropoietin (EPO) as a key regulator of erythropoiesis, bone remodeling and endothelial transdifferentiation of multipotent mesenchymal stem cells (MSCs): implications in regenerative medicine[J]. Cells, 2021, 10(8): 2140. DOI: 10.3390/cells10082140.
    [6] WEN D, BOISSEL JP, TRACY TE, et al. Erythropoietin structure-function relationships: high degree of sequence homology among mammals[J]. Blood, 1993, 82(5): 1507-1516. DOI: 10.1182/blood.V82.5.1507.1507.
    [7] ELLIOTT S, SINCLAIR AM. The effect of erythropoietin on normal and neoplastic cells[J]. Biologics, 2012, 6: 163-189. DOI: 10.2147/BTT.S32281.
    [8] BRINES M, GRASSO G, FIORDALISO F, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor[J]. Proc Natl Acad Sci U S A, 2004, 101(41): 14907-14912. DOI: 10.1073/pnas.0406491101.
    [9] RISØR LM, FENGER M, OLSEN NV, et al. Hepatic erythropoietin response in cirrhosis[J]. Scand J Clin Lab Invest, 2016, 76(3): 234-239. DOI: 10.3109/00365513.2015.1137351.
    [10] LÖNNBERG M, GARLE M, LÖNNBERG L, et al. Patients with anaemia can shift from kidney to liver production of erythropoietin as shown by glycoform analysis[J]. J Pharm Biomed Anal, 2013, 81/82: 187-192. DOI: 10.1016/j.jpba.2013.04.009.
    [11] BOSE S, VOLPATTI LR, THIONO D, et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells[J]. Nat Biomed Eng, 2020, 4(8): 814-826. DOI: 10.1038/s41551-020-0538-5.
    [12] HANSEN-ESTRUCH C, COOPER DKC, JUDD E. Physiological aspects of pig kidney xenotransplantation and implications for management following transplant[J]. Xenotransplantation, 2022, 29(3): e12743. DOI: 10.1111/xen.12743.
    [13] CHOE HM, LUO ZB, KANG JD, et al. Pathological features in 'humanized' neonatal pig[J]. Anim Biotechnol, 2023, 34(2): 301-309. DOI: 10.1080/10495398.2021.1962896.
    [14] COOPER DKC, HARA H, IWASE H, et al. Clinical pig kidney xenotransplantation: how close are we?[J]. J Am Soc Nephrol, 2020, 31(1): 12-21. DOI: 10.1681/ASN.2019070651.
    [15] PAN SY, TSAI PZ, CHOU YH, et al. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis[J]. Kidney Int, 2021, 99(6): 1354-1368. DOI: 10.1016/j.kint.2021.01.017.
    [16] SCHOLZ H, BOIVIN FJ, SCHMIDT-OTT KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5): 335-349. DOI: 10.1038/s41581-021-00394-7.
    [17] HONDA T, HIRAKAWA Y, NANGAKU M. The role of oxidative stress and hypoxia in renal disease[J]. Kidney Res Clin Pract, 2019, 38(4): 414-426. DOI: 10.23876/j.krcp.19.063.
    [18] FAIVRE A, SCHOLZ CC, DE SEIGNEUX S. Hypoxia in chronic kidney disease: towards a paradigm shift?[J]. Nephrol Dial Transplant, 2021, 36(10): 1782-1790. DOI: 10.1093/ndt/gfaa091.
    [19] GUGLIELMO C, BIN S, CANTARELLI C, et al. Erythropoietin reduces auto- and alloantibodies by inhibiting T follicular helper cell differentiation[J]. J Am Soc Nephrol, 2021, 32(10): 2542-2560. DOI: 10.1681/ASN.2021010098.
    [20] HORWITZ JK, BIN S, FAIRCHILD RL, et al. Linking erythropoietin to Treg-dependent allograft survival through myeloid cells[J]. JCI Insight, 2022, 7(10): e158856. DOI: 10.1172/jci.insight.158856.
    [21] ESWARAPPA M, CANTARELLI C, CRAVEDI P. Erythropoietin in lupus: unanticipated immune modulating effects of a kidney hormone[J]. Front Immunol, 2021, 12: 639370. DOI: 10.3389/fimmu.2021.639370.
    [22] DONADEI C, ANGELETTI A, CANTARELLI C, et al. Erythropoietin inhibits SGK1-dependent Th17 induction and Th17-dependent kidney disease[J]. JCI Insight, 2019, 5(10): e127428. DOI: 10.1172/jci.insight.127428.
    [23] KNOCHELMANN HM, DWYER CJ, BAILEY SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5): 458-469. DOI: 10.1038/s41423-018-0004-4.
    [24] ZHOU S, QIAO YM, LIU YG, et al. Bone marrow derived mesenchymal stem cells pretreated with erythropoietin accelerate the repair of acute kidney injury[J]. Cell Biosci, 2020, 10(1): 130. DOI: 10.1186/s13578-020-00492-2.
    [25] TSUJITA M, KOSUGI T, GOTO N, et al. The effect of maintaining high hemoglobin levels on long-term kidney function in kidney transplant recipients: a randomized controlled trial[J]. Nephrol Dial Transplant, 2019, 34(8): 1409-1416. DOI: 10.1093/ndt/gfy365.
    [26] SCHECHTER A, GAFTER-GVILI A, SHEPSHELOVICH D, et al. Post renal transplant anemia: severity, causes and their association with graft and patient survival[J]. BMC Nephrol, 2019, 20(1): 51. DOI: 10.1186/s12882-019-1244-y.
    [27] SILVA BDPC, LASMAR MF, NASCIMENTO E, et al. Impact of early blood transfusion after kidney transplantation on the clinical outcomes and allograft survival[J]. Transpl Immunol, 2023, 77: 101807. DOI: 10.1016/j.trim.2023.101807.
    [28] HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. Am J Transplant, 2023, 23(3): 353-365. DOI: 10.1016/j.ajt.2022.11.022.
    [29] FIRL DJ, LASSITER G, HIROSE T, et al. Clinical and molecular correlation defines activity of physiological pathways in life-sustaining kidney xenotransplantation[J]. Nat Commun, 2023, 14(1): 3022. DOI: 10.1038/s41467-023-38465-x.
    [30] CHEN TK, KNICELY DH, GRAMS ME. Chronic kidney disease diagnosis and management: a review[J]. JAMA, 2019, 322(13): 1294-1304. DOI: 10.1001/jama.2019.14745.
    [31] BOYCE NW, HOLDSWORTH SR. Direct antiGBM antibody induced alterations in glomerular permselectivity[J]. Kidney Int, 1986, 30(5): 666-672. DOI: 10.1038/ki.1986.238.
    [32] IWASE H, YAMAMOTO T, COOPER DKC. Episodes of hypovolemia/dehydration in baboons with pig kidney transplants: a new syndrome of clinical importance?[J]. Xenotransplantation, 2019, 26(2): e12472. DOI: 10.1111/xen.12472.
    [33] HANSEN-ESTRUCH C, PORRETT PM, KUMAR V, et al. The science of xenotransplantation for nephrologists[J]. Curr Opin Nephrol Hypertens, 2022, 31(4): 387-393. DOI: 10.1097/MNH.0000000000000800.
    [34] HANSEN-ESTRUCH C, BIKHET MH, SHAIK IH, et al. Assessment of glomerular filtration and tubular secretion in baboons with life-supporting pig kidney grafts[J]. Xenotransplantation, 2023, 30(2): e12795. DOI: 10.1111/xen.12795.
    [35] 程焕, 简桂花, 汪年松. 慢性肾脏病继发钙磷代谢紊乱发病机制研究[J]. 上海医药, 2019, 40(10): 7-9,24. DOI: 10.3969/j.issn.1006-1533.2019.10.003.

    CHENG H, JIAN GH, WANG NS. Research on the pathogenesis of calcium-phosphorus metabolism disorder associated with chronic kidney disease[J]. Shanghai Med Pharm J, 2019, 40(10): 7-9,24. DOI: 10.3969/j.issn.1006-1533.2019.10.003.
    [36] LATIC N, ERBEN RG. FGF23 and vitamin D metabolism[J]. JBMR Plus, 2021, 5(12): e10558. DOI: 10.1002/jbm4.10558.
    [37] LATIC N, ERBEN RG. Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system[J]. Nutrients, 2022, 14(23): 5186. DOI: 10.3390/nu14235186.
    [38] IWASE H, HARA H, EZZELARAB M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts[J]. Xenotransplantation, 2017, 24(2):e12293. DOI: 10.1111/xen.12293.
    [39] 李宁. 肾移植术后矿物质和骨异常[J]. 器官移植, 2019, 10(5): 559-569. DOI: 10.3969/J.ISSN.1674-7445.2019.05.016.

    LI N. Mineral and bone abnormalities after renal transplantation[J]. Organ Transplant, 2019, 10(5): 559-569. DOI: 10.3969/J.ISSN.1674-7445.2019.05.016.
    [40] ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [41] TATAPUDI VS, GRIESEMER AD. Physiologic considerations of pig-to-human kidney xenotransplantation[J]. Curr Opin Nephrol Hypertens, 2023, 32(2): 193-198. DOI: 10.1097/MNH.0000000000000858.
    [42] GANCHIKU Y, RIELLA LV. Pig-to-human kidney transplantation using brain-dead donors as recipients: one giant leap, or only one small step for transplantkind?[J]. Xenotransplantation, 2022, 29(3): e12748. DOI: 10.1111/xen.12748.
    [43] JAGDALE A, COOPER DKC, IWASE H, et al. Chronic dialysis in patients with end-stage renal disease: relevance to kidney xenotransplantation[J]. Xenotransplantation, 2019, 26(2): e12471. DOI: 10.1111/xen.12471.
  • 加载中
图(1)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  232
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 录用日期:  2023-09-19
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2023-11-09

目录

    /

    返回文章
    返回