留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核因子E2相关因子2在肾缺血-再灌注损伤中的作用

李晓凤, 张国欣, 杨开银, 等. 核因子E2相关因子2在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2023, 14(5): 656-661. doi: 10.3969/j.issn.1674-7445.2023124
引用本文: 李晓凤, 张国欣, 杨开银, 等. 核因子E2相关因子2在肾缺血-再灌注损伤中的作用[J]. 器官移植, 2023, 14(5): 656-661. doi: 10.3969/j.issn.1674-7445.2023124
Li Xiaofeng, Zhang Guoxin, Yang Kaiyin, et al. Effect of nuclear factor E2-related factor 2 on renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 656-661. doi: 10.3969/j.issn.1674-7445.2023124
Citation: Li Xiaofeng, Zhang Guoxin, Yang Kaiyin, et al. Effect of nuclear factor E2-related factor 2 on renal ischemia-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 656-661. doi: 10.3969/j.issn.1674-7445.2023124

核因子E2相关因子2在肾缺血-再灌注损伤中的作用

doi: 10.3969/j.issn.1674-7445.2023124
基金项目: 甘肃省自然科学基金(20JR5RA159);甘肃中医药大学2023年度研究生创新创业基金项目32号
详细信息
    作者简介:
    通讯作者:

    张凌云(ORCID:0009-0007-8881-8374),副主任医师,硕士研究生导师,研究方向为围手术期器官保护,Email:zhangly8848@126.com

  • 中图分类号: R617, R329.2

Effect of nuclear factor E2-related factor 2 on renal ischemia-reperfusion injury

More Information
  • 摘要: 肾缺血-再灌注损伤(RIRI)是导致急性肾损伤(AKI)最主要的原因,常见于外科手术、严重创伤、休克和药物性肾损伤中。目前仍然缺乏有效的治疗手段应对RIRI。氧化应激是RIRI主要的病理损伤机制,核因子E2相关因子2(Nrf2)是抗氧化应激反应的关键转录因子,可激活与氧化还原和解毒相关的各种细胞保护基因。近年来研究表明,Nrf2可通过调节氧化应激、炎症反应、细胞凋亡以及细胞自噬等途径,在RIRI的防治中发挥保护作用。因此,本文围绕Nrf2的结构及其生物学功能、Nrf2相关信号通路及Nrf2在RIRI发生发展中的作用及可能机制进行综述,以期为RIRI的预防和治疗提供新的思路。

     

  • [1] KELLUM JA, ROMAGNANI P, ASHUNTANTANG G, et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7(1): 52. DOI: 10.1038/s41572-021-00284-z.
    [2] NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [3] YU C, XIAO JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging[J]. Oxid Med Cell Longev, 2021: 6635460. DOI: 10.1155/2021/6635460.
    [4] ULASOV AV, ROSENKRANZ AA, GEORGIEV GP, et al. Nrf2/Keap1/ARE signaling: towards specific regulation[J]. Life Sci, 2022, 291: 120111. DOI: 10.1016/j.lfs.2021.120111.
    [5] GEORGE M, THARAKAN M, CULBERSON J, et al. Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases[J]. Ageing Res Rev, 2022, 82: 101756. DOI: 10.1016/j.arr.2022.101756.
    [6] 王慧, 龚园其, 周仪华, 等. 青藤碱调控Nrf2/Keap1信号通路对脓毒症急性肺损伤的改善作用[J]. 实用医学杂志, 2022, 38(15): 1896-1900. DOI: 10.3969/j.issn.1006-5725.2022.15.009.

    WANG H, GONG YQ, ZHOU YH, et al. Alkaloid sinomenine improves acute lung injury in sepsis by activating Nrf2/Keap1 signaling pathway[J]. J Pract Med, 2022, 38(15): 1896-1900. DOI: 10.3969/j.issn.1006-5725.2022.15.009.
    [7] SADRKHANLOO M, ENTEZARI M, OROUEI S, et al. Targeting Nrf2 in ischemia-reperfusion alleviation: from signaling networks to therapeutic targeting[J]. Life Sci, 2022, 300: 120561. DOI: 10.1016/j.lfs.2022.120561.
    [8] SÜNTAR I, ÇETINKAYA S, PANIERI E, et al. Regulatory role of Nrf2 signaling pathway in wound healing process[J]. Molecules, 2021, 26(9): 2424. DOI: 10.3390/molecules26092424.
    [9] LI F, ALJAHDALI IAM, ZHANG R, et al. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma[J]. J Exp Clin Cancer Res, 2021, 40(1): 254. DOI: 10.1186/s13046-021-02026-1.
    [10] NISHIZAWA H, YAMANAKA M, IGARASHI K. Ferroptosis: regulation by competition between Nrf2 and BACH1 and propagation of the death signal[J]. FEBS J, 2023, 290(7): 1688-1704. DOI: 10.1111/febs.16382.
    [11] SUZUKI T, TAKAHASHI J, YAMAMOTO M. Molecular basis of the Keap1-Nrf2 signaling pathway[J]. Mol Cells, 2023, 46(3): 133-141. DOI: 10.14348/molcells.2023.0028.
    [12] CYRAN AM, ZHITKOVICH A. HIF1, HSF1, and Nrf2: oxidant-responsive trio raising cellular defenses and engaging immune system[J]. Chem Res Toxicol, 2022, 35(10): 1690-1700. DOI: 10.1021/acs.chemrestox.2c00131.
    [13] LIN DW, HSU YC, CHANG CC, et al. Insights into the molecular mechanisms of Nrf2 in kidney injury and diseases[J]. Int J Mol Sci, 2023, 24(7): 6053. DOI: 10.3390/ijms24076053.
    [14] WANG L, ZHANG X, XIONG X, et al. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke[J]. Antioxidants (Basel), 2022, 11(12): 2377. DOI: 10.3390/antiox11122377.
    [15] VAN DER HORST D, CARTER-TIMOFTE ME, VAN GREVENYNGHE J, et al. Regulation of innate immunity by Nrf2[J]. Curr Opin Immunol, 2022, 78: 102247. DOI: 10.1016/j.coi.2022.102247.
    [16] QIN Z, WANG H, DOU Q, et al. Protective effect of fluoxetine against oxidative stress induced by renal ischemia-reperfusion injury via the regulation of miR-450b-5p/Nrf2 axis[J]. Aging (Albany NY), 2022,DOI: 10.18632/aging.204289[Epub ahead of print
    [17] ZHAO S, CHEN W, LI W, et al. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2[J]. J Cell Mol Med, 2021, 25(20): 9767-9783. DOI: 10.1111/jcmm.16924.
    [18] AL-YASSIRI AK, HADI NR, ALTEMIMI M, et al. Nephroprotective effect of olmesartan on renal ischemia reperfusion injury in male rats: the role of Nrf2/HO-1 signaling pathway[J]. Wiad Lek, 2022, 75(11 pt 2): 2791-2803. DOI: 10.36740/WLek202211213.
    [19] SU Y, WANG Y, LIU M, et al. Hydrogen sulfide attenuates renal I/R-induced activation of the inflammatory response and apoptosis via regulating Nrf2-mediated NLRP3 signaling pathway inhibition[J]. Mol Med Rep, 2021, 24(1): 518. DOI: 10.3892/mmr.2021.12157.
    [20] 黄霖, 廖盼丽, 张炯. 莱菔硫烷激动Nrf-2抗炎症改善小鼠肾缺血再灌注损伤[J]. 西安交通大学学报(医学版), 2019, 40(5): 696-701. DOI: 10.7652/jdyxb201905006.

    HUANG L, LIAO PL, ZHANG J. Sulforaphane attenuates renal ischemia reperfusion injury in mice by Nrf-2 against inflammation[J]. J Xi'an Jiaotong Univ (Med Sci), 2019, 40(5): 696-701. DOI: 10.7652/jdyxb201905006.
    [21] 李帅, 张炳东. 细胞凋亡途径的研究进展[J]. 山东医药, 2017, 57(37): 103-106. DOI: 10.3969/j.issn.1002-266X.2017.37.036.

    LI S, ZHANG BD. Research progress in cell apoptosis pathways[J]. Shandong Med J, 2017, 57(37): 103-106. DOI: 10.3969/j.issn.1002-266X.2017.37.036.
    [22] 牟俊杰, 冯静, 张文松, 等. 淫羊藿苷介导Nrf2/HO-1信号通路减轻大鼠肾缺血再灌注损伤和氧化应激[J]. 安徽医科大学学报, 2021, 56(3): 449-453, 457. DOI: 10.19405/j.cnki.issn1000-1492.2020.03.022.

    MOU JJ, FENG J, ZHANG WS, et al. Icariin mediates Nrf2/HO-1 signaling pathway to alleviate renal ischemia reperfusion injury and oxidative stress in rats[J]. Acta Unive Med Anhui, 2021, 56(3): 449-453, 457. DOI: 10.19405/j.cnki.issn1000-1492.2020.03.022.
    [23] ZHANG B, WAN S, LIU H, et al. Naringenin alleviates renal ischemia reperfusion injury by suppressing ER stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway[J]. Oxid Med Cell Longev, 2022: 5992436. DOI: 10.1155/2022/5992436.
    [24] TANG Y, LENG YF, WANG W, et al. Protective effect of saxagliptin on diabetic rats with renal ischemia reperfusion injury by targeting oxidative stress and mitochondrial apoptosis pathway through activating Nrf-2/HO-1 signaling[J]. Transpl Immunol, 2023, 76: 101762. DOI: 10.1016/j.trim.2022.101762.
    [25] ZHU L, HE S, HUANG L, et al. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response[J]. Aging Cell, 2022, 21(6): e13616. DOI: 10.1111/acel.13616.
    [26] LI L, TAN J, MIAO Y, et al. ROS and autophagy: interactions and molecular regulatory mechanisms[J]. Cell Mol Neurobiol, 2015, 35(5): 615-621. DOI: 10.1007/s10571-015-0166-x.
    [27] OKUSHA Y, MURSHID A, CALDERWOOD SK. Proteotoxic stress-induced autophagy is regulated by the Nrf2 pathway via extracellular vesicles[J]. Cell Stress Chaperones, 2023, 28(2): 167-175. DOI: 10.1007/s12192-023-01326-z.
    [28] ZHANG Y, LIU M, ZHANG Y, et al. Urolithin A alleviates acute kidney injury induced by renal ischemia reperfusion through the p62-Keap1-Nrf2 signaling pathway[J]. Phytother Res, 2022, 36(2): 984-995. DOI: 10.1002/ptr.7370.
    [29] LEI XL, ZHAO GY, GUO R, et al. Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential[J]. Front Immunol, 2022, 13: 956361. DOI: 10.3389/fimmu.2022.956361.
    [30] GONG D, CHEN M, WANG Y, et al. Role of ferroptosis on tumor progression and immunotherapy[J]. Cell Death Discov, 2022, 8(1): 427. DOI: 10.1038/s41420-022-01218-8.
    [31] SHAKYA A, MCKEE NW, DODSON M, et al. Anti-ferroptotic effects of Nrf2: beyond the antioxidant response[J]. Mol Cells, 2023, 46(3): 165-175. DOI: 10.14348/molcells.2023.0005.
    [32] JIANG GP, LIAO YJ, HUANG LL, et al. Effects and molecular mechanism of pachymic acid on ferroptosis in renal ischemia reperfusion injury[J]. Mol Med Rep, 2021, 23(1): 63. DOI: 10.3892/mmr.2020.11704.
    [33] HUANG YB, JIANG L, LIU XQ, et al. Melatonin alleviates acute kidney injury by inhibiting Nrf2/SLC7A11 axis-mediated ferroptosis[J]. Oxid Med Cell Longev, 2022: 4776243. DOI: 10.1155/2022/4776243.
    [34] ESTERAS N, ABRAMOV AY. Nrf2 as a regulator of mitochondrial function: energy metabolism and beyond[J]. Free Radic Biol Med, 2022, 189: 136-153. DOI: 10.1016/j.freeradbiomed.2022.07.013.
    [35] HAGEMANN JH, THOMASOVA D, MULAY SR, et al. Nrf2 signalling promotes ex vivo tubular epithelial cell survival and regeneration via murine double minute (MDM)-2[J]. Nephrol Dial Transplant, 2013, 28(8): 2028-2037. DOI: 10.1093/ndt/gft037.
    [36] VICTOR P, SARADA D, RAMKUMAR KM. Pharmacological activation of Nrf2 promotes wound healing[J]. Eur J Pharmacol, 2020, 886: 173395. DOI: 10.1016/j.ejphar.2020.173395.
  • 加载中
图(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  113
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回