留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非HLA抗体相关肾移植排斥反应的研究进展

张淑宇, 李月红. 非HLA抗体相关肾移植排斥反应的研究进展[J]. 器官移植, 2023, 14(5): 730-735. doi: 10.3969/j.issn.1674-7445.2023101
引用本文: 张淑宇, 李月红. 非HLA抗体相关肾移植排斥反应的研究进展[J]. 器官移植, 2023, 14(5): 730-735. doi: 10.3969/j.issn.1674-7445.2023101
Zhang Shuyu, Li Yuehong. Research progress on kidney transplantation rejection associated with non-HLA antibody[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 730-735. doi: 10.3969/j.issn.1674-7445.2023101
Citation: Zhang Shuyu, Li Yuehong. Research progress on kidney transplantation rejection associated with non-HLA antibody[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 730-735. doi: 10.3969/j.issn.1674-7445.2023101

非HLA抗体相关肾移植排斥反应的研究进展

doi: 10.3969/j.issn.1674-7445.2023101
基金项目: 首都卫生发展科研专项基金(首发2022-3-2243);清华大学精准医学基金(2022TS007)
详细信息
    作者简介:
    通讯作者:

    李月红(ORCID:0000-0002-4772-0641),博士,主任医师,研究方向为肾移植,Email:lyha01051@btch.edu.cn

  • 中图分类号: R617, R392.4

Research progress on kidney transplantation rejection associated with non-HLA antibody

More Information
  • 摘要: 人类白细胞抗原(HLA)是由HLA基因复合体所编码的产物,定位于6号染色体短臂上,是异体免疫的主要靶点,但HLA抗体阳性并不能解释所有的肾移植排斥反应。非HLA抗体是同种异体肾移植中供者基因表达的产物,术中缺血-再灌注损伤、异体和自身免疫相互作用、细胞外囊泡的介导作用等都可以触发免疫系统反应,促使非HLA抗体产生。多项研究表明非HLA抗体是诱发排斥反应、影响肾移植结局的重要因素。因此,本文就肾移植非HLA抗体类型及形成机制进行综述,总结非HLA抗体相关肾移植排斥反应的研究进展,以期为肾移植术后非HLA抗体相关排斥反应的研究提供参考。

     

  • 图  1  非HLA抗体种类

    注:GSTT1为谷胱甘肽S-转移酶T1;ETAR为内皮素A受体;ARHGDIB为Rho鸟嘌呤核苷酸解离抑制因子β;PECR为过氧化物酶体反式-2-烯酰辅酶A还原酶。

    Figure  1.  Types of non-HLA antibodies

  • [1] TAMBUR AR, KOSMOLIAPTSIS V, CLAAS FHJ, et al. Significance of HLA-DQ in kidney transplantation: time to reevaluate human leukocyte antigen-matching priorities to improve transplant outcomes? an expert review and recommendations[J]. Kidney Int, 2021, 100(5): 1012-1022. DOI: 10.1016/j.kint.2021.06.026.
    [2] ZHANG X, REINSMOEN NL. Impact and production of non-HLA-specific antibodies in solid organ transplantation[J]. Int J Immunogenet, 2020, 47(3): 235-242. DOI: 10.1111/iji.12494.
    [3] GRATWOHL A, DÖHLER B, STERN M, et al. H-Y as a minor histocompatibility antigen in kidney transplantation: a retrospective cohort study[J]. Lancet, 2008, 372(9632): 49-53. DOI: 10.1016/S0140-6736(08)60992-7.
    [4] ALLISON SJ. MICA in kidney transplants[J]. Nat Rev Nephrol, 2022, 18(5): 273. DOI: 10.1038/s41581-022-00563-2.
    [5] KIM SJ, GILL JS. H-Y incompatibility predicts short-term outcomes for kidney transplant recipients[J]. J Am Soc Nephrol, 2009, 20(9): 2025-2033. DOI: 10.1681/ASN.2008101110.
    [6] SOROHAN BM, BASTON C, TACU D, et al. Non-HLA antibodies in kidney transplantation: immunity and genetic insights[J]. Biomedicines, 2022, 10(7): 1506. DOI: 10.3390/biomedicines10071506.
    [7] GUTIÉRREZ-LARRAÑAGA M, LÓPEZ-HOYOS M, RENALDO A, et al. Non-HLA Abs in solid organ transplantation[J]. Transplantology, 2020, 1(1): 24-41. DOI: 10.3390/transplantology1010003.
    [8] CARAPITO R, AOUADI I, VERNIQUET M, et al. The MHC class I MICA gene is a histocompatibility antigen in kidney transplantation[J]. Nat Med, 2022, 28(5): 989-998. DOI: 10.1038/s41591-022-01725-2.
    [9] COMOLI P, CIONI M, RAY B, et al. Anti-glutathione S-transferase theta 1 antibodies correlate with graft loss in non-sensitized pediatric kidney recipients[J]. Front Med (Lausanne), 2022, 9: 1035400. DOI: 10.3389/fmed.2022.1035400.
    [10] 庄少勇, 陈若洋, 李大伟, 等. 肾移植术后非HLA抗体与体液性排斥反应相关性研究[J]. 中华器官移植杂志, 2022, 43(6): 328-333. DOI: 10.3760/cma.j.cn421203-20220117-00010.

    ZHUANG SY, CHEN RY, LI DW, et al. Correlation between post-transplant non-HLA antibodies and humoral rejection after kidney transplantation[J]. Chin J Organ Transplant, 2022, 43(6): 328-333. DOI: 10.3760/cma.j.cn421203-20220117-00010.
    [11] NAKANISHI G, BERTAGNOLLI LS, PITA-OLIVEIRA M, et al. GSTM1 and GSTT1 polymorphisms in healthy volunteers - a worldwide systematic review[J]. Drug Metab Rev, 2022, 54(1): 37-45. DOI: 10.1080/03602532.2022.2036996.
    [12] SOROHAN BM, ISMAIL G, LECA N, et al. Angiotensin II type 1 receptor antibodies in kidney transplantation: an evidence-based comprehensive review[J]. Transplant Rev (Orlando), 2020, 34(4): 100573. DOI: 10.1016/j.trre.2020.100573.
    [13] PINELLI DF, FRIEDEWALD JJ, HAARBERG KMK, et al. Assessing the potential of angiotensin II type 1 receptor and donor specific anti-endothelial cell antibodies to predict long-term kidney graft outcome[J]. Hum Immunol, 2017, 78(5/6): 421-427. DOI: 10.1016/j.humimm.2017.03.012.
    [14] SOROHAN BM, ISMAIL G, BERECHET A, et al. The early impact of preformed angiotensin II type 1 receptor antibodies on graft function in a low immunological risk cohort of kidney transplant recipients[J]. Transpl Immunol, 2021, 66: 101389. DOI: 10.1016/j.trim.2021.101389.
    [15] LIU C, KANG ZY, YIN Z, et al. Levels of angiotensin II type-1 receptor antibodies and endothelin-1 type-A receptor antibodies correlate with antibody-mediated rejection and poor graft function in kidney-transplantation patients[J]. Transpl Immunol, 2022, 74: 101674. DOI: 10.1016/j.trim.2022.101674.
    [16] ALJISHI M, ISBEL NM, JEGATHEESAN D, et al. Rejection and graft outcomes in kidney transplant recipients with and without angiotensin II receptor type 1 antibodies[J]. Transpl Immunol, 2023, 76: 101756. DOI: 10.1016/j.trim.2022.101756.
    [17] CUEVAS E, ARREOLA-GUERRA JM, HERNÁNDEZ-MÉNDEZ EA, et al. Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies[J]. Nephrol Dial Transplant, 2016, 31(10): 1738-1745. DOI: 10.1093/ndt/gfw204.
    [18] MAGUIRE JJ, DAVENPORT AP. Endothelin receptors and their antagonists[J]. Semin Nephrol, 2015, 35(2): 125-136. DOI: 10.1016/j.semnephrol.2015.02.002.
    [19] PEARL MH, CHEN L, ELCHAKI R, et al. Endothelin type A receptor antibodies are associated with angiotensin II type 1 receptor antibodies, vascular inflammation, and decline in renal function in pediatric kidney transplantation [J]. Kidney Int Rep, 2020, 5(11): 1925-1936. DOI: 10.1016/j.ekir.2020.09.004.
    [20] NOWAŃSKA K, WIŚNICKI K, KURIATA-KORDEK M, et al. The role of endothelin II type A receptor (ETAR) in transplant injury[J]. Transpl Immunol, 2022, 70: 101505. DOI: 10.1016/j.trim.2021.101505.
    [21] CATAR RA, WISCHNEWSKI O, CHEN L, et al. Non-HLA antibodies targeting angiotensin II type 1 receptor and endothelin-1 type A receptors induce endothelial injury via β2-arrestin link to mTOR pathway[J]. Kidney Int, 2022, 101(3): 498-509. DOI: 10.1016/j.kint.2021.09.029.
    [22] DIEUDÉ M, CARDINAL H, HÉBERT MJ. Injury derived autoimmunity: anti-perlecan/LG3 antibodies in transplantation[J]. Hum Immunol, 2019, 80(8): 608-613. DOI: 10.1016/j.humimm.2019.04.009.
    [23] CARROLL R, TURGEON J, DEAYTON S, et al. Double pretransplant positivity for autoantibodies to LG3 and angiotensin II type 1 receptor is associated with alloimmune vascular injury in kidney transplant recipients[J]. Transplant Direct, 2023, 9(2): e1437. DOI: 10.1097/TXD.0000000000001437.
    [24] MAWAD H, PINARD L, MEDANI S, et al. Hypothermic perfusion modifies the association between anti-LG3 antibodies and delayed graft function in kidney recipients[J]. Transpl Int, 2023, 36: 10749. DOI: 10.3389/ti.2023.10749.
    [25] PADET L, DIEUDÉ M, KARAKEUSSIAN-RIMBAUD A, et al. New insights into immune mechanisms of antiperlecan/LG3 antibody production: importance of T cells and innate B1 cells[J]. Am J Transplant, 2019, 19(3): 699-712. DOI: 10.1111/ajt.15082.
    [26] STEUBL D, HETTWER S, VRIJBLOED W, et al. C-terminal agrin fragment--a new fast biomarker for kidney function in renal transplant recipients[J]. Am J Nephrol, 2013, 38(6): 501-508. DOI: 10.1159/000356969.
    [27] JOOSTEN SA, SIJPKENS YW, VAN HAM V, et al. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy[J]. Am J Transplant, 2005, 5(2): 383-393. DOI: 10.1111/j.1600-6143.2005.00690.x.
    [28] ANGASWAMY N, KLEIN C, TIRIVEEDHI V, et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy[J]. Am J Transplant, 2014, 14(3): 685-693. DOI: 10.1111/ajt.12592.
    [29] PARK S, YANG SH, KIM J, et al. Clinical significances of anti-collagen type I and type III antibodies in antibody-mediated rejection[J]. Transpl Int, 2022, 35: 10099. DOI: 10.3389/ti.2022.10099.
    [30] DIVANYAN T, ACOSTA E, PATEL D, et al. Anti-vimentin antibodies in transplant and disease[J]. Hum Immunol, 2019, 80(8): 602-607. DOI: 10.1016/j.humimm.2019.03.017.
    [31] LOPEZ-SOLER RI, BORGIA JA, KANANGAT S, et al. Anti-vimentin antibodies present at the time of transplantation may predict early development of interstitial fibrosis/tubular atrophy[J]. Transplant Proc, 2016, 48(6): 2023-2033. DOI: 10.1016/j.transproceed.2016.04.009.
    [32] RAMPERSAD C, SHAW J, GIBSON IW, et al. Early antibody-mediated kidney transplant rejection associated with anti-vimentin antibodies: a case report[J]. Am J Kidney Dis, 2020, 75(1): 138-143. DOI: 10.1053/j.ajkd.2019.06.010.
    [33] KAMBUROVA EG, GRUIJTERS ML, KARDOL-HOEFNAGEL T, et al. Antibodies against ARHGDIB are associated with long-term kidney graft loss[J]. Am J Transplant, 2019, 19(12): 3335-3344. DOI: 10.1111/ajt.15493.
    [34] SENEV A, OTTEN HG, KAMBUROVA EG, et al. Antibodies against ARHGDIB and ARHGDIB gene expression associate with kidney allograft outcome[J]. Transplantation, 2020, 104(7): 1462-1471. DOI: 10.1097/TP.0000000000003005.
    [35] BETJES MGH, SABLIK KA, LITJENS NHR, et al. ARHGDIB and AT1R autoantibodies are differentially related to the development and presence of chronic antibody-mediated rejection and fibrosis in kidney allografts[J]. Hum Immunol, 2021, 82(2): 89-96. DOI: 10.1016/j.humimm.2020.12.003.
    [36] 邹志锐, 满江位, 杨立. DAMP与NET在器官缺血-再灌注损伤中作用新进展[J]. 器官移植, 2021, 12(6): 761-766. DOI: 10.3969/j.issn.1674-7445.2021.06.018.

    ZOU ZR, MAN JW, YANG L. Recent progress on the roles of DAMP and NET in organ ischemia-reperfusion injury[J]. Organ Transplant, 2021, 12(6): 761-766. DOI: 10.3969/j.issn.1674-7445.2021.06.018.
    [37] CARDINAL H, DIEUDÉ M, BRASSARD N, et al. Antiperlecan antibodies are novel accelerators of immune-mediated vascular injury[J]. Am J Transplant, 2013, 13(4): 861-874. DOI: 10.1111/ajt.12168.
    [38] CHARMETANT X, CHEN CC, HAMADA S, et al. Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation[J]. Sci Transl Med, 2022, 14(663): eabg1046. DOI: 10.1126/scitranslmed.abg1046.
    [39] 李洋. 树突状细胞外泌体与肺癌免疫治疗[J]. 天津医科大学学报, 2023, 29(1): 94-97.

    LI Y. Dendritic cell extracellular vesicles and immunotherapy for lung cancer[J]. J Tianjin Med Univ, 2023, 29(1): 94-97.
    [40] DIEUDÉ M, BELL C, TURGEON J, et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection[J]. Sci Transl Med, 2015, 7(318): 318ra200. DOI: 10.1126/scitranslmed.aac9816.
    [41] HSU HC, YANG P, WANG J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice[J]. Nat Immunol, 2008, 9(2): 166-175. DOI: 10.1038/ni1552.
    [42] CHENG J, TORKAMANI A, GROVER RK, et al. Ectopic B-cell clusters that infiltrate transplanted human kidneys are clonal[J]. Proc Natl Acad Sci U S A, 2011, 108(14): 5560-5565. DOI: 10.1073/pnas.1101148108.
    [43] 翁小淇, 苏士成, 陆艺文. 三级淋巴样结构与抗肿瘤免疫[J]. 中国细胞生物学学报, 2022, 44(4): 627-638. DOI: 10.11844/cjcb.2022.04.0010.

    WENG XQ, SU SC, LU YW. Tertiary lymphoid structure and antitumor immunity[J]. Chin J Cell Biol, 2022, 44(4): 627-638. DOI: 10.11844/cjcb.2022.04.0010.
  • 加载中
图(2)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  140
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 录用日期:  2023-07-07
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回