留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁死亡在器官移植缺血-再灌注损伤中的作用与展望

李佳蔚, 许红阳. 铁死亡在器官移植缺血-再灌注损伤中的作用与展望[J]. 器官移植, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058
引用本文: 李佳蔚, 许红阳. 铁死亡在器官移植缺血-再灌注损伤中的作用与展望[J]. 器官移植, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058
Li Jiawei, Xu Hongyang. Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058
Citation: Li Jiawei, Xu Hongyang. Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058

铁死亡在器官移植缺血-再灌注损伤中的作用与展望

doi: 10.3969/j.issn.1674-7445.2023058
基金项目: 国家自然科学基金(82070059)
详细信息
    作者简介:
    通讯作者:

    许红阳(ORCID:0009-0003-8847-3506),医学博士,主任医师,研究方向为重症医学及肺移植术后监护,Email:xhy1912@aliyun.com

  • 中图分类号: R617, R329.2

Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation

More Information
  • 摘要: 铁死亡是近年来新发现的一种程序性细胞死亡方式,被定义为由脂质过氧化损伤介导而引起的铁依赖性的程序性坏死。铁死亡作为一种保守性程序,在包括植物和动物界在内的各种生物的发展和疾病中起着至关重要的作用。自从2012年铁死亡被首次报道以来,人们对铁死亡的过程及其在疾病治疗中的作用产生较大兴趣。缺血-再灌注损伤是一种在器官移植中常见的病理过程,而铁死亡被认为是引起缺血-再灌注损伤的重要方式之一,因此,本文就铁死亡的定义、调控机制,以及其在肾、肝、心脏、肺移植术后缺血-再灌注损伤中的作用机制等进行综述,以期为器官移植缺血-再灌注损伤的预防与治疗提供理论基础。

     

  • [1] TANG D, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. DOI: 10.1038/s41422-020-00441-1.
    [2] 刘岩, 雷立芳. 铁死亡与神经退行性疾病[J]. 中华老年医学杂志, 2021, 40(4): 428-432. DOI: 10.3760/cma.j.issn.0254-9026.2021.04.005.

    LIU Y, LEI LF. The role of ferroptosis in neurodegenerative disease[J]. Chin J Geriatr, 2021, 40(4): 428-432. DOI: 10.3760/cma.j.issn.0254-9026.2021.04.005.
    [3] JIANG X, STOCKWELL BR, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.
    [4] 易欣, 刘畅, 周易, 等. 铁死亡与缺血再灌注损伤关系的研究进展[J]. 广西医学, 2021, 43(7): 858-862. DOI: 10.11675/j.issn.0253-4304.2021.07.16.

    YI X, LIU C, ZHOU Y, et al. Research progress on the relationship between ferroptosis and ischemia-reperfusion injury[J]. Guangxi Med J, 2021, 43(7): 858-862. DOI: 10.11675/j.issn.0253-4304.2021.07.16.
    [5] LI X, MA N, XU J, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021: 1587922. DOI: 10.1155/2021/1587922.
    [6] ZHAO L, ZHOU X, XIE F, et al. Ferroptosis in cancer and cancer immunotherapy[J]. Cancer Commun (Lond), 2022, 42(2): 88-116. DOI: 10.1002/cac2.12250.
    [7] CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0.
    [8] LIN HQ, DAI SH, LIU WC, et al. Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model[J]. Life Sci, 2021, 268: 118820. DOI: 10.1016/j.lfs.2020.118820.
    [9] LIU WC, CHEN SB, LIU S, et al. Inhibition of mitochondrial autophagy protects donor lungs for lung transplantation against ischaemia-reperfusion injury in rats via the mTOR pathway[J]. J Cell Mol Med, 2019, 23(5): 3190-3201. DOI: 10.1111/jcmm.14177.
    [10] 刘思齐, 杨正飞. 铁死亡: 心肌缺血再灌注损伤分子机制和药物治疗研究新靶点[J]. 中山大学学报(医学科学版) , 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.

    LIU SQ, YANG ZF. Ferroptosis: novel research targets of molecular mechanism and drug therapy for myocardial ischemia-reperfusion injury[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.
    [11] SHI S, WANG L, VAN DER LAAN LJW, et al. Mitochondrial dysfunction and oxidative stress in liver transplantation and underlying diseases: new insights and therapeutics[J]. Transplantation, 2021, 105(11): 2362-2373. DOI: 10.1097/TP.0000000000003691.
    [12] MASLOV LN, POPOV SV, NARYZHNAYA NV, et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury[J]. Apoptosis, 2022, 27(9/10): 697-719. DOI: 10.1007/s10495-022-01760-x.
    [13] 王倩, 明婷倩, 吴晓静. 铁死亡的发生机制及其在急性肺损伤的研究进展[J]. 医学研究杂志, 2022, 51(6): 173-176. DOI: 10.11969/j.issn.1673-548X.2022.06.036.

    WANG Q, MING TQ, WU XJ. Progress of the traditional chinese medicine in the regulation of ferroptosis in cerebral ischemia-reperfusion injury[J]. Prog Physiol Sci, 2022, 51(6): 173-176. DOI: 10.11969/j.issn.1673-548X.2022.06.036.
    [14] BERTRAND RL. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events[J]. Med Hypotheses, 2017, 101: 69-74. DOI: 10.1016/j.mehy.2017.02.017.
    [15] LI J, CAO F, YIN HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
    [16] 蒋楠, 杜立达, 孔德文, 等. 胱氨酸/谷氨酸反向转运体作为药物靶点的研究进展[J]. 药学学报, 2022, 57(6): 1621-1629. DOI: 10.16438/j.0513-4870.2022-0542.

    JIANG N, DU LD, KONG DW, et al. Research progress of cystine/glutamate antiporter as drug targets[J]. Acta Pharmaceutica Sinica, 2022, 57(6): 1621-1629. DOI: 10.16438/j.0513-4870.2022-0542.
    [17] BRIDGES RJ, NATALE NR, PATEL SA. System Xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1): 20-34. DOI: 10.1111/j.1476-5381.2011.01480.x.
    [18] FRIEDMANN ANGELI JP, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. DOI: 10.1038/ncb3064.
    [19] LEI G, ZHANG Y, HONG T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021, 40(20): 3533-3547. DOI: 10.1038/s41388-021-01790-w.
    [20] BERSUKER K, HENDRICKS JM, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2.
    [21] 张晓燕, 朱毅, 管又飞. 花生四烯酸代谢与健康和疾病——序言[J]. 生理学报, 2021, 73(4): 535-538. DOI: 10.13294/j.aps.2021.0065.

    ZHANG XY, ZHU Y, GUAN YF. Arachidonic acid metabolism in health and disease: an introduction[J]. Acta Physiologica Sinica, 2021, 73(4): 535-538. DOI: 10.13294/j.aps.2021.0065.
    [22] KAGAN VE, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
    [23] 刘湘慧, 斯韬, 梁婷, 等. 铁死亡发生机制及其在肝细胞癌中的作用研究进展[J]. 陕西医学杂志, 2023, 52(3): 354-357. DOI: 10.3969/j.issn.1000-7377.2023.03.025.

    LIU XH, SI T, LIANG T, et al. Mechanism of ferroptosis and its role in hepatocellular carcinoma[J]. Shaanxi Med J, 2023, 52(3): 354-357. DOI: 10.3969/j.issn.1000-7377.2023.03.025.
    [24] TANG LJ, LUO XJ, TU H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 401-410. DOI: 10.1007/s00210-020-01932-z.
    [25] SCINDIA Y, LEEDS J, SWAMINATHAN S. Iron homeostasis in healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019, 39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.
    [26] BRAND MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J]. Free Radic Biol Med, 2016, 100: 14-31. DOI: 10.1016/j.freeradbiomed.2016.04.001.
    [27] SALAHUDEEN AK, JOSHI M, JENKINS JK. Apoptosis versus necrosis during cold storage and rewarming of human renal proximal tubular cells[J]. Transplantation, 2001, 72(5): 798-804. DOI: 10.1097/00007890-200109150-00010.
    [28] KNIGHT JA, VOORHEES RP, MARTIN L, et al. Lipid peroxidation in stored red cells[J]. Transfusion, 1992, 32(4): 354-357. DOI: 10.1046/j.1537-2995.1992.32492263451.x.
    [29] ANEGAWA D, SUGIURA Y, MATSUOKA Y, et al. Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol[J]. Commun Biol, 2021, 4(1): 796. DOI: 10.1038/s42003-021-02297-6.
    [30] MARTIN-SANCHEZ D, FONTECHA-BARRIUSO M, MARTINEZ-MORENO JM, et al. Ferroptosis and kidney disease[J]. Nefrologia (Engl Ed), 2020, 40(4): 384-394. DOI: 10.1016/j.nefro.2020.03.005.
    [31] LINKERMANN A, SKOUTA R, HIMMERKUS N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47): 16836-16841. DOI: 10.1073/pnas.1415518111.
    [32] THAPA K, SINGH TG, KAUR A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-1341. DOI: 10.1007/s00210-022-02277-5.
    [33] YE Z, ZHANG L, LI R, et al. Caspase-11 mediates pyroptosis of tubular epithelial cells and septic acute kidney injury[J]. Kidney Blood Press Res, 2019, 44(4): 465-478. DOI: 10.1159/000499685.
    [34] MIAO N, YIN F, XIE H, et al. The cleavage of Gasdermin D by Caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int, 2019, 96(5): 1105-1120. DOI: 10.1016/j.kint.2019.04.035.
    [35] MÜLLER T, DEWITZ C, SCHMITZ J, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure[J]. Cell Mol Life Sci, 2017, 74(19): 3631-3645. DOI: 10.1007/s00018-017-2547-4.
    [36] WEI Z, HAO C, HUANGFU J, et al. Aging lens epithelium is susceptible to ferroptosis[J]. Free Radic Biol Med, 2021, 167: 94-108. DOI: 10.1016/j.freeradbiomed.2021.02.010.
    [37] GO S, KANG M, KWON SP, et al. The senolytic drug JQ1 removes senescent cells via ferroptosis[J]. Tissue Eng Regen Med, 2021, 18(5): 841-850. DOI: 10.1007/s13770-021-00346-z.
    [38] LIAO CM, WULFMEYER VC, CHEN R, et al. Induction of ferroptosis selectively eliminates senescent tubular cells[J]. Am J Transplant, 2022, 22(9): 2158-2168. DOI: 10.1111/ajt.17102.
    [39] 白杨, 史冀华, 张水军. 程序性细胞死亡在肝脏缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(5): 647-652. DOI: 10.3969/j.issn.1674-7445.2022.05.015.

    BAI Y, SHI JH, ZHANG SJ. Research progress on the role of programmed cell death in hepatic ischemia-reperfusion injury[J]. Organ Transplant, 2022, 13(5): 647-652. DOI: 10.3969/j.issn.1674-7445.2022.05.015.
    [40] ITO T, NAINI BV, MARKOVIC D, et al. Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients[J]. Am J Transplant, 2021, 21(2): 614-625. DOI: 10.1111/ajt.16219.
    [41] YAMADA N, KARASAWA T, WAKIYA T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618. DOI: 10.1111/ajt.15773.
    [42] LENNICKE C, COCHEMÉ HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function[J]. Mol Cell, 2021, 81(18): 3691-3707. DOI: 10.1016/j.molcel.2021.08.018.
    [43] LIU H, MAN K. New insights in mechanisms and therapeutics for short- and long-term impacts of hepatic ischemia reperfusion injury post liver transplantation[J]. Int J Mol Sci, 2021, 22(15): 8210. DOI: 10.3390/ijms22158210.
    [44] GALLEANO M, TAPIA G, PUNTARULO S, et al. Liver preconditioning induced by iron in a rat model of ischemia/reperfusion[J]. Life Sci, 2011, 89(7/8): 221-228. DOI: 10.1016/j.lfs.2011.06.005.
    [45] GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. DOI: 10.1016/j.molcel.2015.06.011.
    [46] LI W, FENG G, GAUTHIER JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129(6): 2293-2304. DOI: 10.1172/JCI126428.
    [47] CHAN W, TAYLOR AJ, ELLIMS AH, et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction[J]. Circ Cardiovasc Interv, 2012, 5(2): 270-278. DOI: 10.1161/CIRCINTERVENTIONS.111.966226.
    [48] YOSHIDA M, MINAGAWA S, ARAYA J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10(1): 3145. DOI: 10.1038/s41467-019-10991-7.
    [49] XU Y, LI X, CHENG Y, et al. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion[J]. FASEB J, 2020, 34(12): 16262-16275. DOI: 10.1096/fj.202001758R.
    [50] 沙小兰, 李玉兰, 王晓霞, 等. 去铁胺对高氧机械通气大鼠肺表面活性蛋白D和抗氧化酶的影响[J]. 临床麻醉学杂志, 2019, 35(10): 1002-1005. DOI: 10.12089/jca.2019.10.016.

    SHA XL, LI YL, WANG XX, et al. Effect of deferoxamine on pulmonary surfactant protein D and antioxidant enzymes in rats exposed to hyperoxia ventilation[J]. J Clin Anesthesiol, 2019, 35(10): 1002-1005. DOI: 10.12089/jca.2019.10.016.
  • 加载中
图(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  232
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回