留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热休克蛋白在器官移植中的作用研究现状

程学超, 宋永祥, 孟辉. 热休克蛋白在器官移植中的作用研究现状[J]. 器官移植, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019
引用本文: 程学超, 宋永祥, 孟辉. 热休克蛋白在器官移植中的作用研究现状[J]. 器官移植, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019
Cheng Xuechao, Song Yongxiang, Meng Hui. Research status on the role of heat shock protein in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019
Citation: Cheng Xuechao, Song Yongxiang, Meng Hui. Research status on the role of heat shock protein in organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(3): 455-460. doi: 10.3969/j.issn.1674-7445.2023.03.019

热休克蛋白在器官移植中的作用研究现状

doi: 10.3969/j.issn.1674-7445.2023.03.019
基金项目: 

贵州省科技厅基础研究项目 黔科合作基础-ZK[2021]一般352

遵义医科大学博士科研启动资金项目 BS2021-02

甘肃省自然科学基金 1606RJZA184

详细信息
    作者简介:
    通讯作者:

    孟辉(ORCID: 0000-0002-0349-6692),硕士研究生导师,副主任医师,研究方向为胸部(战)创伤、食管外科、肺移植等基础与临床研究,Email:mhgl2008@163.com

  • 中图分类号: R617

Research status on the role of heat shock protein in organ transplantation

More Information
  • 摘要: 器官移植是多种终末期疾病有效的治疗方案,近年来,器官移植领域发展迅速,并得到广泛认可和应用,但供者利用率低和术后并发症高仍是亟需解决的问题。热休克蛋白(HSP)是一类由热休克或其他应激源诱导表达的蛋白质家族,应激刺激时HSP通过发挥抗炎、抗氧化、抗凋亡作用来减少应激带来的损伤,HSP还参与促进免疫反应、抗排斥反应等过程。器官移植手术作为应激刺激,诱导HSP在移植过程中通过多途径发挥作用,从而减轻移植物组织损伤、提高供者利用率、延长移植受者术后生存时间。本文就HSP在肺移植、心脏移植、肝移植、肾移植中的作用研究现状进行综述,旨在为器官移植供者保护及术后并发症的治疗提供参考。

     

  • [1] YANG S, TIAN J, ZHANG F, et al. The protective effects of heat shock protein 22 in lung ischemia-reperfusion injury mice[J]. Biochem Biophys Res Commun, 2019, 512(4): 698-704. DOI: 10.1016/j.bbrc.2019.03.048.
    [2] MI J, YANG Y, YAO H, et al. Inhibition of heat shock protein family A member 8 attenuates spinal cord ischemia-reperfusion injury via astrocyte NF-κB/NLRP3 inflammasome pathway : HSPA8 inhibition protects spinal ischemia-reperfusion injury[J]. J Neuroinflammation, 2021, 18(1): 170. DOI: 10.1186/s12974-021-02220-0.
    [3] GOLMOHAMMADI MG, BANAEI S, NEJATI K, et al. Vitamin D3 and erythropoietin protect against renal ischemia-reperfusion injury via heat shock protein 70 and microRNA-21 expression[J]. Sci Rep, 2020, 10(1): 20906. DOI: 10.1038/s41598-020-78045-3.
    [4] RADA CC, MEJIA-PENA H, GRIMSEY NJ, et al. Heat shock protein 27 activity is linked to endothelial barrier recovery after proinflammatory GPCR-induced disruption[J]. Sci Signal, 2021, 14(698): eabc1044. DOI: 10.1126/scisignal.abc1044.
    [5] 李玲, 徐千, 魏婉慧, 等. 脑死亡模型兔炎症因子表达和肺损伤性变化[J]. 中国组织工程研究, 2018, 22(28): 4481-4486. DOI: 10.3969/j.issn.2095-4344.0367.

    LI L, XU Q, WEI WH, et al. Lung injury and inflammatory responses in a rabbit model of brain death[J]. Chin J Tissue Eng Res, 2018, 22(28): 4481-4486. DOI: 10.3969/j.issn.2095-4344.0367.
    [6] ARJUNA A, OLSON MT, WALIA R, et al. An update on current treatment strategies for managing bronchiolitis obliterans syndrome after lung transplantation[J]. Expert Rev Respir Med, 2021, 15(3): 339-350. DOI: 10.1080/17476348.2021.1835475.
    [7] GLANVILLE AR, BENDEN C, BERGERON A, et al. Bronchiolitis obliterans syndrome after lung or haematopoietic stem cell transplantation: current management and future directions[J]. ERJ Open Res, 2022, 8(3): 00185-2022. DOI: 10.1183/23120541.00185-2022.
    [8] SCHIPPER HM, SONG W, TAVITIAN A, et al. The sinister face of heme oxygenase-1 in brain aging and disease[J]. Prog Neurobiol, 2019, 172: 40-70. DOI: 10.1016/j.pneurobio.2018.06.008.
    [9] FACCHINETTI MM. Heme-oxygenase-1[J]. Antioxid Redox Signal, 2020, 32(17): 1239-1242. DOI: 10.1089/ars.2020.8065.
    [10] JIANG K, CHENG L, WANG J, et al. Heme oxygenase-1 expression in rats with acute lung rejection and implication[J]. J Huazhong Univ Sci Technol Med Sci, 2009, 29(1): 84-87. DOI: 10.1007/s11596-009-0118-0.
    [11] BONNELL MR, VISNER GA, ZANDER DS, et al. Heme-oxygenase-1 expression correlates with severity of acute cellular rejection in lung transplantation[J]. J Am Coll Surg, 2004, 198(6): 945-952. DOI: 10.1016/j.jamcollsurg.2004.01.026.
    [12] 林江波, 康明强, 陈道中, 等. 血红素加氧酶-1高表达对大鼠同种异体肺移植物缺血再灌注损伤的保护作用[J]. 福建医科大学学报, 2012, 46(1): 15-19. DOI: 10.3969/j.issn.1672-4194.2012.01.004.

    LIN JB, KANG MQ, CHEN DZ, et al. Endogenous heme oxygenase-1 overexpression protects rat lung allografts from ischemia reperfusion injury[J]. J Fujian Med Univ, 2012, 46(1): 15-19. DOI: 10.3969/j.issn.1672-4194.2012.01.004.
    [13] 洪俊杰, 张振阳, 林江波, 等. 血红素加氧酶-1修饰间充质干细胞治疗肺移植缺血再灌注损伤的研究[J]. 中华实验外科杂志, 2019, 36(12): 2231-2233. DOI: 10.3760/cma.j.issn.1001-9030.2019.12.032.

    HONG JJ, ZHANG ZY, LIN JB, et al. Heme oxygenase-1 modified mesenchymal stem cells in the treatment of ischemia-reperfusion injury in lung transplantation[J]. Chin J Exp Surg, 2019, 36(12): 2231-2233. DOI: 10.3760/cma.j.issn.1001-9030.2019.12.032.
    [14] SUN X, SIRI S, HURST A, et al. Heat shock protein 22 in physiological and pathological hearts: small molecule, large potentials[J]. Cells, 2021, 11(1): 114. DOI: 10.3390/cells11010114.
    [15] 成纯伟, 管斌. 热休克蛋白22在临床相关疾病中作用的研究进展[J]. 现代医院, 2022, 22(5): 796-799. DOI: 10.3969/j.issn.1671-332X.2022.05.041.

    CHENG CW, GUAN B. Role of heat shock protein 22 in clinical diseases: a literature review[J]. Mod Hosp, 2022, 22(5): 796-799. DOI: 10.3969/j.issn.1671-332X.2022.05.041.
    [16] LIU S, XU J, FANG C, et al. Over-expression of heat shock protein 70 protects mice against lung ischemia/reperfusion injury through SIRT1/AMPK/eNOS pathway[J]. Am J Transl Res, 2016, 8(10): 4394-4404.
    [17] MARTÍNEZ-LAORDEN E, NAVARRO-ZARAGOZA J, MILANÉS MV, et al. Cardiac protective role of heat shock protein 27 in the stress induced by drugs of abuse[J]. Int J Mol Sci, 2020, 21(10): 3623. DOI: 10.3390/ijms21103623.
    [18] POBER JS, CHIH S, KOBASHIGAWA J, et al. Cardiac allograft vasculopathy: current review and future research directions[J]. Cardiovasc Res, 2021, 117(13): 2624-2638. DOI: 10.1093/cvr/cvab259.
    [19] HAMS A, BELL N, JONES T. Evaluating the impact of a regional student-led physiotherapy clinic model to improve self-reported function in community-dwelling adults with neurological diagnoses[J]. J Neurol Phys Ther, 2022, 46(3): 206-212. DOI: 10.1097/NPT.0000000000000399.
    [20] JING H, ZOU G, HAO F, et al. HSP27 reduces cold ischemia-reperfusion injury in heart transplantation through regulation of NF-κB and PUMA signaling[J]. Int J Clin Exp Pathol, 2018, 11(1): 281-292.
    [21] HAUSENLOY DJ, SCHULZ R, GIRAO H, et al. Mitochondrial ion channels as targets for cardioprotection[J]. J Cell Mol Med, 2020, 24(13): 7102-7114. DOI: 10.1111/jcmm.15341.
    [22] ACEROS H, DER SARKISSIAN S, BORIE M, et al. Novel heat shock protein 90 inhibitor improves cardiac recovery in a rodent model of donation after circulatory death[J]. J Thorac Cardiovasc Surg, 2022, 163(2): e187-e197. DOI: 10.1016/j.jtcvs.2020.03.042.
    [23] MAEHANA T, TANAKA T, HASHIMOTO K, et al. Heat shock protein 90 is a new potential target of anti-rejection therapy in allotransplantation[J]. Cell Stress Chaperones, 2022, 27(4): 337-351. DOI: 10.1007/s12192-022-01272-2.
    [24] SONG YJ, ZHONG CB, WANG XB. Heat shock protein 70: a promising therapeutic target for myocardial ischemia-reperfusion injury[J]. J Cell Physiol, 2019, 234(2): 1190-1207. DOI: 10.1002/jcp.27110.
    [25] HIRAO H, DERY KJ, KAGEYAMA S, et al. Heme oxygenase-1 in liver transplant ischemia-reperfusion injury: from bench-to-bedside[J]. Free Radic Biol Med, 2020, 157: 75-82. DOI: 10.1016/j.freeradbiomed.2020.02.012.
    [26] SOLOMON M, GRASEMANN H, KESHAVJEE S. Pediatric lung transplantation[J]. Pediatr Clin North Am, 2010, 57(2): 375-391, table of contents. DOI: 10.1016/j.pcl.2010.01.017.
    [27] GALLOWAY E, SHIN T, HUBER N, et al. Activation of hepatocytes by extracellular heat shock protein 72[J]. Am J Physiol Cell Physiol, 2008, 295(2): C514-C520. DOI: 10.1152/ajpcell.00032.2008.
    [28] FAYBIK P, WACHAUER D, HETZ H, et al. Perioperative kinetics of heat shock protein 60 in serum during orthotopic liver transplantation[J]. Transplant Proc, 2004, 36(5): 1469-1472. DOI: 10.1016/j.transproceed.2004.05.033.
    [29] QIAO Y, ZHANG X, ZHAO G, et al. Hepatocellular iNOS protects liver from ischemia/reperfusion injury through HSF1-dependent activation of HSP70[J]. Biochem Biophys Res Commun, 2019, 512(4): 882-888. DOI: 10.1016/j.bbrc.2019.03.133.
    [30] WU HH, HUANG CC, CHANG CP, et al. Heat shock protein 70 (HSP70) reduces hepatic inflammatory and oxidative damage in a rat model of liver ischemia/reperfusion injury with hyperbaric oxygen preconditioning[J]. Med Sci Monit, 2018, 24: 8096-8104. DOI: 10.12659/MSM.911641.
    [31] TASHIRO S, MIYAKE H, ROKUTAN K. Role of geranylgeranylacetone as non-toxic HSP70 inducer in liver surgery: clinical application[J]. J Hepatobiliary Pancreat Sci, 2018, 25(5): 269-274. DOI: 10.1002/jhbp.549.
    [32] HOTER A, EL-SABBAN ME, NAIM HY. The HSP90 family: structure, regulation, function, and implications in health and disease[J]. Int J Mol Sci, 2018, 19(9): 2560. DOI: 10.3390/ijms19092560.
    [33] MAITI S, PICARD D. Cytosolic HSP90 isoform-specific functions and clinical significance[J]. Biomolecules, 2022, 12(9): 1166. DOI: 10.3390/biom12091166.
    [34] CALDAS C, LUNA E, SPADAFORA-FERREIRA M, et al. Cellular autoreactivity against heat shock protein 60 in renal transplant patients: peripheral and graft-infiltrating responses[J]. Clin Exp Immunol, 2006, 146(1): 66-75. DOI: 10.1111/j.1365-2249.2006.03195.x.
    [35] GRANJA C, MOLITERNO RA, FERREIRA MS, et al. T-cell autoreactivity to HSP in human transplantation may involve both proinflammatory and regulatory functions[J]. Hum Immunol, 2004, 65(2): 124-134. DOI: 10.1016/j.humimm.2003.10.007.
    [36] KONGTASAI T, PAEPE D, MEYER E, et al. Renal biomarkers in cats: a review of the current status in chronic kidney disease[J]. J Vet Intern Med, 2022, 36(2): 379-396. DOI: 10.1111/jvim.16377.
    [37] HOSSAIN MA, DE SOUZA AI, BAGUL A, et al. HSP70, peroxiredoxin-3 and -6 are upregulated during renal warm ischaemia in a donation after circulatory death model[J]. J Proteomics, 2014, 108: 133-145. DOI: 10.1016/j.jprot.2014.05.008.
    [38] ZANIERATO M, DONDOSSOLA D, PALLESCHI A, et al. Donation after circulatory death: possible strategies for in-situ organ preservation[J]. Minerva Anestesiol, 2020, 86(9): 984-991. DOI: 10.23736/S0375-9393.20.14262-7.
  • 加载中
图(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  54
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-29
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回