留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

供肝保存与功能维护助力肝移植发展

谢炎, 蒋文涛. 供肝保存与功能维护助力肝移植发展[J]. 器官移植, 2023, 14(2): 201-206. doi: 10.3969/j.issn.1674-7445.2023.02.004
引用本文: 谢炎, 蒋文涛. 供肝保存与功能维护助力肝移植发展[J]. 器官移植, 2023, 14(2): 201-206. doi: 10.3969/j.issn.1674-7445.2023.02.004
Xie Yan, Jiang Wentao. Liver graft preservation and functional maintenance accelerate the development of liver transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 201-206. doi: 10.3969/j.issn.1674-7445.2023.02.004
Citation: Xie Yan, Jiang Wentao. Liver graft preservation and functional maintenance accelerate the development of liver transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(2): 201-206. doi: 10.3969/j.issn.1674-7445.2023.02.004

供肝保存与功能维护助力肝移植发展

doi: 10.3969/j.issn.1674-7445.2023.02.004
基金项目: 

国家自然科学基金面上项目 81870444

天津市卫生健康委员会重点学科专项 TJWJ2022XK016

天津市自然科学基金面上项目 20JCYBJC01010

详细信息
    作者简介:
    通讯作者:

    蒋文涛,Email:jiangwentao@nankai.edu.cn

  • 中图分类号: R617

Liver graft preservation and functional maintenance accelerate the development of liver transplantation

More Information
  • 摘要: 肝移植作为终末期肝病的有效治疗方法已在世界范围内广泛开展,并逐渐取得普遍认可。随着肝移植手术技术趋于成熟,术后并发症发生率逐步降低,受者的短期和长期预后持续改善。然而,器官的供应与需求之间一直存在着巨大鸿沟,是限制肝移植手术开展的重要原因。国内肝移植手术量逐年上升,供肝短缺问题日益突出,边缘供肝越来越多地应用于临床。近年来,供者器官的选择标准、器官的保存及功能维护技术不断完善。本文将从供肝保存、功能维护两方面,结合二者近年来的技术发展和研究成果,评述不同技术的应用情况和发展趋势,为进一步提高移植物和受者生存率,促进我国肝移植的发展提供参考。

     

  • [1] LIN Y, HUANG H, CHEN L, et al. Assessing donor liver quality and restoring graft function in the era of extended criteria donors[J]. J Clin Transl Hepatol, 2023, 11(1): 219-230. DOI: 10.14218/JCTH.2022.00194.
    [2] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
    [3] CHEN Z, HONG X, HUANG S, et al. Continuous normothermic machine perfusion for renovation of extended criteria donor livers without recooling in liver transplantation: a pilot experience[J]. Front Surg, 2021, 8: 638090. DOI: 10.3389/fsurg.2021.638090.
    [4] PESCARISSI C, PENZO B, GHINOLFI D, et al. The perioperative period of liver transplantation from unconventional extended criteria donors: data from two high-volume centres[J]. BMC Anesthesiol, 2022, 22(1): 390. DOI: 10.1186/s12871-022-01932-x.
    [5] AMIN A, PANAYOTOVA G, GUARRERA JV. Hypothermic machine perfusion for liver graft preservation[J]. Curr Opin Organ Transplant, 2022, 27(2): 98-105. DOI: 10.1097/MOT.0000000000000973.
    [6] JAKUBAUSKAS M, JAKUBAUSKIENE L, LEBER B, et al. Machine perfusion in liver transplantation: a systematic review and meta-analysis[J]. Visc Med, 2022, 38(4): 243-254. DOI: 10.1159/000519788.
    [7] JOCHMANS I, BRAT A, DAVIES L, et al. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial[J]. Lancet, 2020, 396(10263): 1653-1662. DOI: 10.1016/S0140-6736(20)32411-9.
    [8] TINGLE SJ, FIGUEIREDO RS, MOIR JA, et al. Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation[J]. Cochrane Database Syst Rev, 2019, 3(3): CD011671. DOI: 10.1002/14651858.CD011671.pub2.
    [9] BARDALLO RG, DA SILVA RT, CARBONELL T, et al. Liver graft hypothermic static and oxygenated perfusion (HOPE) strategies: a mitochondrial crossroads[J]. Int J Mol Sci, 2022, 23(10): 5742. DOI: 10.3390/ijms23105742.
    [10] SCHLEGEL A, MULLER X, MUELLER M, et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation[J]. EBioMedicine, 2020, 60: 103014. DOI: 10.1016/j.ebiom.2020.103014.
    [11] MUGAANYI J, DAI L, LU C, et al. A meta-analysis and systematic review of normothermic and hypothermic machine perfusion in liver transplantation[J]. J Clin Med, 2022, 12(1): 235. DOI: 10.3390/jcm12010235.
    [12] SOUSA DA SILVA RX, WEBER A, DUTKOWSKI P, et al. Machine perfusion in liver transplantation[J]. Hepatology, 2022, 76(5): 1531-1549. DOI: 10.1002/hep.32546.
    [13] CZIGANY Z, PRATSCHKE J, FRONĚK J, et al. Hypothermic oxygenated machine perfusion reduces early allograft injury and improves post-transplant outcomes in extended criteria donation liver transplantation from donation after brain death: results from a multicenter randomized controlled trial (HOPE ECD-DBD)[J]. Ann Surg, 2021, 274(5): 705-712. DOI: 10.1097/SLA.0000000000005110.
    [14] SCHLEGEL A, MULLER X, KALISVAART M, et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation[J]. J Hepatol, 2019, 70(1): 50-57. DOI: 10.1016/j.jhep.2018.10.005.
    [15] MARTINS PN, BUCHWALD JE, MERGENTAL H, et al. The role of normothermic machine perfusion in liver transplantation[J]. Int J Surg, 2020, 82S: 52-60. DOI: 10.1016/j.ijsu.2020.05.026.
    [16] NASRALLA D, COUSSIOS CC, MERGENTAL H, et al. A randomized trial of normothermic preservation in liver transplantation[J]. Nature, 2018, 557(7703): 50-56. DOI: 10.1038/s41586-018-0047-9.
    [17] WATSON CJE, HUNT F, MESSER S, et al. In situ normothermic perfusion of livers in controlled circulatory death donation may prevent ischemic cholangiopathy and improve graft survival[J]. Am J Transplant, 2019, 19(6): 1745-1758. DOI: 10.1111/ajt.15241.
    [18] HESSHEIMER AJ, COLL E, TORRES F, et al. Normothermic regional perfusion vs. super-rapid recovery in controlled donation after circulatory death liver transplantation[J]. J Hepatol, 2019, 70(4): 658-665. DOI: 10.1016/j.jhep.2018.12.013.
    [19] GAURAV R, BUTLER AJ, KOSMOLIAPTSIS V, et al. Liver transplantation outcomes from controlled circulatory death donors: SCS vs in situ NRP vs ex situ NMP[J]. Ann Surg, 2022, 275(6): 1156-1164. DOI: 10.1097/SLA.0000000000005428.
    [20] RUIZ P, GASTACA M, BUSTAMANTE FJ, et al. Favorable outcomes after liver transplantation with normothermic regional perfusion from donors after circulatory death: a single-center experience[J]. Transplantation, 2019, 103(5): 938-943. DOI: 10.1097/TP.0000000000002391.
    [21] BOTEON YL, AFFORD SC, MERGENTAL H. Pushing the limits: machine preservation of the liver as a tool to recondition high-risk grafts[J]. Curr Transplant Rep, 2018, 5(2): 113-120. DOI: 10.1007/s40472-018-0188-7.
    [22] LINARES I, HAMAR M, SELZNER N, et al. Steatosis in liver transplantation: current limitations and future strategies[J]. Transplantation, 2019, 103(1): 78-90. DOI: 10.1097/TP.0000000000002466.
    [23] NAGRATH D, XU H, TANIMURA Y, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo[J]. Metab Eng, 2009, 11(4/5): 274-283. DOI: 10.1016/j.ymben.2009.05.005.
    [24] LIU Q, NASSAR A, BUCCINI L, et al. Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion[J]. Liver Transpl, 2018, 24(2): 233-245. DOI: 10.1002/lt.24972.
    [25] WANG WC, SAYEDAHMED EE, MITTAL SK. Significance of preexisting vector immunity and activation of innate responses for adenoviral vector-based therapy[J]. Viruses, 2022, 14(12): 2727. DOI: 10.3390/v14122727.
    [26] CHOWDARY P, SHAPIRO S, MAKRIS M, et al. Phase 1-2 trial of AAVS3 gene therapy in patients with hemophilia B[J]. N Engl J Med, 2022, 387(3): 237-247. DOI: 10.1056/NEJMoa2119913.
    [27] BONACCORSI-RIANI E, GILLOOLY AR, IESARI S, et al. Delivering siRNA compounds during HOPE to modulate organ function: a proof-of-concept study in a rat liver transplant model[J]. Transplantation, 2022, 106(8): 1565-1576. DOI: 10.1097/TP.0000000000004175.
    [28] TCHKONIA T, KIRKLAND JL. Aging, cell senescence, and chronic disease: emerging therapeutic strategies[J]. JAMA, 2018, 320(13): 1319-1320. DOI: 10.1001/jama.2018.12440.
    [29] LI J, PENG Q, YANG R, et al. Application of mesenchymal stem cells during machine perfusion: an emerging novel strategy for organ preservation[J]. Front Immunol, 2021, 12: 713920. DOI: 10.3389/fimmu.2021.713920.
    [30] VERSTEGEN MMA, MEZZANOTTE L, RIDWAN RY, et al. First report on ex vivo delivery of paracrine active human mesenchymal stromal cells to liver grafts during machine perfusion[J]. Transplantation, 2020, 104(1): e5-e7. DOI: 10.1097/TP.0000000000002986.
    [31] TIETJEN GT, BRACAGLIA LG, SALTZMAN WM, et al. Focus on fundamentals: achieving effective nanoparticle targeting[J]. Trends Mol Med, 2018, 24(7): 598-606. DOI: 10.1016/j.molmed.2018.05.003.
    [32] STEPHENSON BTF, BONNEY GK, LAING RW, et al. Proof of concept: liver splitting during normothermic machine perfusion[J]. J Surg Case Rep, 2018(3): rjx218. DOI: 10.1093/jscr/rjx218.
    [33] SCHLEGEL A, KALISVAART M, SCALERA I, et al. The UK DCD risk score: a new proposal to define futility in donation-after-circulatory-death liver transplantation[J]. J Hepatol, 2018, 68(3): 456-464. DOI: 10.1016/j.jhep.2017.10.034.
    [34] BHOGAL RH, MIRZA DF, AFFORD SC, et al. Biomarkers of liver injury during transplantation in an era of machine perfusion[J]. Int J Mol Sci, 2020, 21(5): 1578. DOI: 10.3390/ijms21051578.
    [35] WATSON CJE, KOSMOLIAPTSIS V, PLEY C, et al. Observations on the ex situ perfusion of livers for transplantation[J]. Am J Transplant, 2018, 18(8): 2005-2020. DOI: 10.1111/ajt.14687.
  • 加载中
图(1)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  89
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回