留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-155在器官移植排斥反应中的作用研究进展

张阳, 杨金伟, 李兴德, 等. miR-155在器官移植排斥反应中的作用研究进展[J]. 器官移植, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018
引用本文: 张阳, 杨金伟, 李兴德, 等. miR-155在器官移植排斥反应中的作用研究进展[J]. 器官移植, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018
Zhang Yang, Yang Jinwei, Li Xingde, et al. Research progress on the role of miR-155 in rejection of organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018
Citation: Zhang Yang, Yang Jinwei, Li Xingde, et al. Research progress on the role of miR-155 in rejection of organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 666-671. doi: 10.3969/j.issn.1674-7445.2022.05.018

miR-155在器官移植排斥反应中的作用研究进展

doi: 10.3969/j.issn.1674-7445.2022.05.018
基金项目: 

云南省器官移植临床医学中心开放课题基金 2020SYZ-Z-031

云南省卫生健康委员会医学领军人才培养计划项目 L-2018012

昆明市卫生科技人才培养项目 2018-SW(省)-05

详细信息
    作者简介:
    通讯作者:

    宋沧桑,本科,主任药师,研究方向为临床药学,Email:songcs163@163.com

  • 中图分类号: R617, R392

Research progress on the role of miR-155 in rejection of organ transplantation

More Information
  • 摘要: 排斥反应一直是器官移植研究领域中难以彻底攻克的难题。排斥反应的机制研究对提高移植效果以及移植物的存活率十分重要。机体的固有免疫应答和特异性免疫应答协同参与了移植排斥反应,造成移植物损伤。近年来许多研究者对微小核糖核酸(miR)调控排斥反应的机制进行了深入研究,其中miR-155被广泛认为是参与免疫调节的关键因子,其表达水平和功能状态可能与排斥反应的发生密切相关,因而有可能成为克服机体排斥反应的新靶点。本文就miR-155对固有免疫和特异性免疫应答中关键免疫细胞的调控相关研究进行综述,为新型免疫抑制药开发和排斥反应治疗提供新思路。

     

  • [1] RAJAKUMAR T, HOROS R, JEHN J, et al. A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung cancer treated with immunotherapy[J]. NPJ Precis Oncol, 2022, 6(1): 19. DOI: 10.1038/s41698-022-00262-y.
    [2] TU Y, GUO R, LI J, et al. miRNA regulation of MIF in SLE and attenuation of murine lupus nephritis with miR-654[J]. Front Immunol, 2019, 10: 2229. DOI: 10.3389/fimmu.2019.02229.
    [3] HU J, HUANG S, LIU X, et al. miR-155: an important role in inflammation response[J]. J Immunol Res, 2022: 7437281. DOI: 10.1155/2022/7437281.
    [4] MATIAS-GARCIA PR, WILSON R, MUSSACK V, et al. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples[J]. PLoS One, 2020, 15(1): e0227648. DOI: 10.1371/journal.pone.0227648.
    [5] DI STEFANO AB, PAPPALARDO M, MOSCHELLA F, et al. MicroRNAs in solid organ and vascularized composite allotransplantation: potential biomarkers for diagnosis and therapeutic use[J]. Transplant Rev (Orlando), 2020, 34(4): 100566. DOI: 10.1016/j.trre.2020.100566.
    [6] WANG X, ZHANG R, HUANG Z, et al. Inhibition of the miR-155 and protein prenylation feedback loop alleviated acute graft-versus-host disease through regulating the balance between T helper 17 and Treg cells[J]. Transpl Immunol, 2021, 69: 101461. DOI: 10.1016/j.trim.2021.101461.
    [7] LI GS, CUI L, WANG GD. miR-155-5p regulates macrophage M1 polarization and apoptosis in the synovial fluid of patients with knee osteoarthritis[J]. Exp Ther Med, 2021, 21(1): 68. DOI: 10.3892/etm.2020.9500.
    [8] SUN W, ZHANG L, LIN L, et al. Chronic psychological stress impairs germinal center response by repressing miR-155[J]. Brain Behav Immun, 2019, 76: 48-60. DOI: 10.1016/j.bbi.2018.11.002.
    [9] ARBORE G, HENLEY T, BIGGINS L, et al. MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells[J]. Life Sci Alliance, 2019, 2(3): e201800244. DOI: 10.26508/lsa.201800244.
    [10] GUO J, LIAO M, WANG J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155[J]. Cell Commun Signal, 2021, 19(1): 90. DOI: 10.1186/s12964-021-00771-6.
    [11] TANG B, WANG Z, QI G, et al. MicroRNA-155 deficiency attenuates ischemia-reperfusion injury after liver transplantation in mice[J]. Transpl Int, 2015, 28(6): 751-760. DOI: 10.1111/tri.12528.
    [12] KIM HJ, PARK SO, BYEON HW, et al. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors[J]. Immunology, 2022, 116(3): 357-359. DOI: 10.1111/imm.13477.
    [13] JIANG K, YANG J, GUO S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10): 1758-1771. DOI: 10.1016/j.ymthe.2019.07.003.
    [14] RENRICK AN, THOUNAOJAM MC, DE AQUINO MTP, et al. Bortezomib sustains T cell function by inducing miR-155-mediated downregulation of SOCS1 and SHIP1[J]. Front Immunol, 2021, 12: 607044. DOI: 10.3389/fimmu.2021.607044.
    [15] LI J, GONG J, LI P, et al. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts[J]. Transplantation, 2014, 97(6): 626-635. DOI: 10.1097/TP.0000000000000061.
    [16] TENG C, LIN C, HUANG F, et al. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease[J]. Acta Pharm Sin B, 2020, 10(8): 1521-1533. DOI: 10.1016/j.apsb.2020.06.005.
    [17] LI J, ZHANG J, GUO H, et al. Critical role of alternative M2 skewing in miR-155 deletion-mediated protection of colitis[J]. Front Immunol, 2018, 9: 904. DOI: 10.3389/fimmu.2018.00904.
    [18] MARTINEZ-NUNEZ RT, LOUAFI F, FRIEDMANN PS, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN)[J]. J Biol Chem, 2009, 284(24): 16334-16342. DOI: 10.1074/jbc.M109.011601.
    [19] VAN AELST LN, SUMMER G, LI S, et al. RNA profiling in human and murine transplanted hearts: identification and validation of therapeutic targets for acute cardiac and renal allograft rejection[J]. Am J Transplant, 2016, 16(1): 99-110. DOI: 10.1111/ajt.13421.
    [20] CEPPI M, PEREIRA PM, DUNAND-SAUTHIER I, et al. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells[J]. Proc Natl Acad Sci U S A, 2009, 106(8): 2735-2740. DOI: 10.1073/pnas.0811073106.
    [21] ZHANG A, WANG K, ZHOU C, et al. Knockout of microRNA-155 ameliorates the Th1/Th17 immune response and tissue injury in chronic rejection[J]. J Heart Lung Transplant, 2017, 36(2): 175-184. DOI: 10.1016/j.healun.2016.04.018.
    [22] ZITZER NC, SNYDER K, MENG X, et al. MicroRNA-155 modulates acute graft-versus-host disease by impacting T cell expansion, migration, and effector function[J]. J Immunol, 2018, 200(12): 4170-4179. DOI: 10.4049/jimmunol.1701465.
    [23] WANG J, LI K, ZHANG X, et al. MicroRNA-155 controls iNKT cell development and lineage differentiation by coordinating multiple regulating pathways[J]. Front Cell Dev Biol, 2021, 8: 619220. DOI: 10.3389/fcell.2020.619220.
    [24] HUANG H, HE J, TENG X, et al. Combined intrathymic and intravenous injection of mesenchymal stem cells can prolong the survival of rat cardiac allograft associated with decrease in miR-155 expression[J]. J Surg Res, 2013, 185(2): 896-903. DOI: 10.1016/j.jss.2013.06.015.
    [25] LU D, NAKAGAWA R, LAZZARO S, et al. The miR-155-PU. 1 axis acts on Pax5 to enable efficient terminal B cell differentiation[J]. J Exp Med, 2014, 211(11): 2183-2198. DOI: 10.1084/jem.20140338.
    [26] ALSAADI M, KHAN MY, DALHAT MH, et al. Dysregulation of miRNAs in DLBCL: causative factor for pathogenesis, diagnosis and prognosis[J]. Diagnostics (Basel), 2021, 11(10): 1739. DOI: 10.3390/diagnostics11101739.
    [27] FARRONI C, MARASCO E, MARCELLINI V, et al. Dysregulated miR-155 and miR-125b are related to impaired B-cell responses in down syndrome[J]. Front Immunol, 2018, 9: 2683. DOI: 10.3389/fimmu.2018.02683.
    [28] MILLÁN O, RUIZ P, ORTS L, et al. Monitoring of miR-181a-5p and miR-155-5p plasmatic expression as prognostic biomarkers for acute and subclinical rejection in de novo adult liver transplant recipients[J]. Front Immunol, 2019, 10: 873. DOI: 10.3389/fimmu.2019.00873.
    [29] RUIZ P, MILLÁN O, RÍOS J, et al. MicroRNAs 155-5p, 122-5p, and 181a-5p identify patients with graft dysfunction due to T cell-mediated rejection after liver transplantation[J]. Liver Transpl, 2020, 26(10): 1275-1286. DOI: 10.1002/lt.25842.
    [30] TINEL C, LAMARTHÉE B, CALLEMEYN J, et al. Integrative omics analysis unravels microvascular inflammation-related pathways in kidney allograft biopsies[J]. Front Immunol, 2021, 12: 738795. DOI: 10.3389/fimmu.2021.738795.
    [31] XIU MX, LIU ZT, TANG J. Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies[J]. Int Immunopharmacol, 2020, 87: 106827. DOI: 10.1016/j.intimp.2020.106827.
    [32] GIELIS EM, ANHOLTS JDH, VAN BEELEN E, et al. A combined microRNA and chemokine profile in urine to identify rejection after kidney transplantation[J]. Transplant Direct, 2021, 7(7): e711. DOI: 10.1097/TXD.0000000000001169.
    [33] LIN Y, WANG L, GE W, et al. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection[J]. J Transl Med, 2021, 19(1): 346. DOI: 10.1186/s12967-021-03025-8.
    [34] ESMAEILI-BANDBONI A, BAGHERI J, BAKHSHANDEH AR, et al. Serum levels of miR-155, miR-326, and miR-133b as early diagnostic biomarkers for the detection of human acute heart allograft rejection in comparison with serum cardiac troponin T[J]. Heart Surg Forum, 2018, 21(2): E101-E107. DOI: 10.1532/hsf.1887.
    [35] BOZZINI S, DEL FANTE C, MOROSINI M, et al. Mechanisms of action of extracorporeal photopheresis in the control of bronchiolitis obliterans syndrome (BOS): involvement of circulating miRNAs[J]. Cells, 2022, 11(7): 1117. DOI: 10.3390/cells11071117.
    [36] SOLTANINEJAD E, NICKNAM MH, NAFAR M, et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection[J]. Transpl Immunol, 2015, 33(1): 1-6. DOI: 10.1016/j.trim.2015.05.002.
    [37] PALADINI SV, PINTO GH, BUENO RH, et al. Identification of candidate biomarkers for transplant rejection from transcriptome data: a systematic review[J]. Mol Diagn Ther, 2019, 23(4): 439-458. DOI: 10.1007/s40291-019-00397-y.
  • 加载中
图(1)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  54
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回