留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

末端岩藻糖基化抑制剂对环孢素诱导的肾脏上皮-间充质转化的影响及其机制

毛凯锋, 罗嘉亮, 林芬望, 等. 末端岩藻糖基化抑制剂对环孢素诱导的肾脏上皮-间充质转化的影响及其机制[J]. 器官移植, 2022, 13(5): 626-633. doi: 10.3969/j.issn.1674-7445.2022.05.012
引用本文: 毛凯锋, 罗嘉亮, 林芬望, 等. 末端岩藻糖基化抑制剂对环孢素诱导的肾脏上皮-间充质转化的影响及其机制[J]. 器官移植, 2022, 13(5): 626-633. doi: 10.3969/j.issn.1674-7445.2022.05.012
Mao Kaifeng, Luo Jialiang, Lin Fenwang, et al. Effect and mechanism of terminal fucosylation inhibitor on ciclosporin-induced renal epithelial-mesenchymal transition[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 626-633. doi: 10.3969/j.issn.1674-7445.2022.05.012
Citation: Mao Kaifeng, Luo Jialiang, Lin Fenwang, et al. Effect and mechanism of terminal fucosylation inhibitor on ciclosporin-induced renal epithelial-mesenchymal transition[J]. ORGAN TRANSPLANTATION, 2022, 13(5): 626-633. doi: 10.3969/j.issn.1674-7445.2022.05.012

末端岩藻糖基化抑制剂对环孢素诱导的肾脏上皮-间充质转化的影响及其机制

doi: 10.3969/j.issn.1674-7445.2022.05.012
基金项目: 

国家自然科学基金面上项目 81670683

广东省自然科学基金项目 2016A030313566

详细信息
    作者简介:
    通讯作者:

    叶俊生,博士,副教授,研究方向为移植免疫,Email:yejunsh@126.com

  • 中图分类号: R617, R575.3

Effect and mechanism of terminal fucosylation inhibitor on ciclosporin-induced renal epithelial-mesenchymal transition

More Information
  • 摘要:   目的  探讨末端岩藻糖基化抑制剂2-脱氧-D-半乳糖(2-D-gal)对环孢素(CsA)诱导的肾脏上皮-间充质转化(EMT)的影响及其机制。  方法  将15只8~10周的雄性C57BL/6小鼠随机分为对照组(Ctrl组)、CsA组和CsA+2-D-gal组,每组各5只。通过蛋白质印迹法检测Ctrl组和CsA组小鼠肾脏组织岩藻糖基转移酶1(FUT1)和EMT相关蛋白E-cadherin、Vimentin、α-平滑肌肌动蛋白(α-SMA)的表达,免疫荧光法检测Ctrl组和CsA组小鼠肾脏组织末端岩藻糖的表达,Masson染色检测各组小鼠肾脏组织纤维化情况,并检测各组小鼠血尿素氮和血清肌酐水平。体外建立CsA诱导肾小管上皮HK2细胞EMT模型,分别用0、2.5、5.0和10.0 μmol/L的CsA刺激HK2细胞24 h,另将HK2细胞分为Ctrl组、2-D-gal组、CsA组和CsA+2-D-gal组,观察不同浓度CsA刺激后及各组HK2细胞形态,通过蛋白质印迹法检测不同浓度CsA刺激后及各组HK2细胞FUT1、E-cadherin、Vimentin和α-SMA的表达,免疫荧光法检测Ctrl组和CsA组HK2细胞末端岩藻糖的表达。  结果  与Ctrl组比较,CsA组小鼠肾脏组织E-cadherin的蛋白相对表达量下降,FUT1、Vimentin和α-SMA蛋白相对表达量均升高(均为P < 0.05),小鼠肾脏组织末端岩藻糖表达增多。与Ctrl组比较,CsA组和CsA+2-D-gal组小鼠的血尿素氮和血清肌酐水平均升高,与CsA组比较,CsA+2-D-gal组小鼠的血尿素氮和血清肌酐水平均降低(均为P < 0.05)。与Ctrl组比较,CsA组和CsA+2-D-gal组小鼠肾脏组织胶原纤维沉积均增多,α-SMA蛋白相对表达量均升高;与CsA组比较,CsA+2-D-gal组小鼠肾脏组织胶原纤维沉积减少,α-SMA蛋白相对表达量下降(均为P < 0.05)。随着CsA的浓度增加,HK2细胞的形态由正常的鹅卵石样逐渐变长变细,HK2细胞FUT1、Vimentin和α-SMA蛋白相对表达量升高,E-cadherin蛋白相对表达量下降,呈浓度依赖性。与Ctrl组比较,CsA组HK2细胞末端岩藻糖表达增多。CsA处理的基础上联合2-D-gal干预后,CsA+2-D-gal组的HK2细胞形态恢复到与正常HK2细胞形态相似。与CsA组比较,CsA+2-D-gal组的HK2细胞E-cadherin蛋白相对表达量升高,Vimentin和α-SMA蛋白相对表达量均下降(均为P < 0.05)。  结论  CsA在体内和体外均可诱导EMT发生,并且伴有末端岩藻糖基化水平增加。2-D-gal可以通过抑制末端岩藻糖基化来抑制CsA诱导的EMT。

     

  • 图  1  CsA对小鼠肾脏组织EMT相关蛋白表达和末端岩藻糖基化的影响

    注:A图为Ctrl组和CsA组小鼠肾组织FUT1、E-cadherin、Vimentin和α-SMA蛋白相对表达量,与Ctrl组比较,aP < 0.05;B图为Ctrl组和CsA组小鼠肾脏组织末端岩藻糖表达情况(免疫荧光,×200)。

    Figure  1.  Effects of CsA on EMT-related protein expression and terminal fucosylation in renal tissue of mice

    图  2  各组小鼠血尿素氮与血清肌酐水平

    注:A图为各组小鼠血尿素氮水平;B图为各组小鼠血清肌酐水平;与Ctrl组比较,aP < 0.05,与CsA组比较,bP < 0.05。

    Figure  2.  Blood urea nitrogen and serum creatinine levels of mice in each group

    图  3  各组小鼠肾脏组织纤维化情况

    注:A图为各组小鼠肾脏组织胶原纤维沉积情况(Masson,×200);B图为各组小鼠肾组织α-SMA蛋白相对表达量;与Ctrl组比较,aP < 0.05,与CsA组比较,bP < 0.05。

    Figure  3.  Renal tissue fibrosis of mice in each group

    图  4  CsA对HK2细胞形态、EMT相关蛋白表达和末端岩藻糖基化的影响

    注:A图为显微镜下不同浓度CsA作用下的细胞形态图(×200);B图为不同浓度CsA作用下HK2细胞的FUT1、E-cadherin、Vimentin和α-SMA蛋白相对表达量,与0 μmol/L CsA比较,aP < 0.05,与2.5 μmol/L CsA比较,bP < 0.05,与5.0 μmol/L CsA比较,cP < 0.05;C图为Ctrl组和CsA组HK2细胞末端岩藻糖的表达情况(免疫荧光,×200)。

    Figure  4.  Effects of CsA on morphology of HK2 cells, expression of EMT-related protein and levels of terminal fucosylation

    图  5  各组HK2细胞形态及EMT相关蛋白表达水平

    注:A图为显微镜下的各组HK2细胞形态图(×200);B图为各组HK2细胞E-cadherin、Vimentin和α-SMA蛋白相对表达量,与Ctrl组比较,aP < 0.05,与CsA组比较,bP < 0.05。

    Figure  5.  Morphology of HK2 cells and expression of EMT-related protein levels in each group

  • [1] PATOCKA J, NEPOVIMOVA E, KUCA K, et al. Cyclosporine A: chemistry and toxicity - a review[J]. Curr Med Chem, 2021, 28(20): 3925-3934. DOI: 10.2174/0929867327666201006153202.
    [2] STÂRCEA M, GAVRILOVICI C, MUNTEANU M, et al. Focal segmental glomerulosclerosis in children complicated by posterior reversible encephalopathy syndrome[J]. J Int Med Res, 2018, 46(3): 1172-1177. DOI: 10.1177/0300060517746559.
    [3] LIN CX, LI Y, LIANG S, et al. Metformin attenuates cyclosporine A-induced renal fibrosis in rats[J]. Transplantation, 2019, 103(10): e285-e296. DOI: 10.1097/TP.0000000000002864.
    [4] CHEN Y, WANG N, YUAN Q, et al. The protective effect of fluorofenidone against cyclosporine A-induced nephrotoxicity[J]. Kidney Blood Press Res, 2019, 44(4): 656-668. DOI: 10.1159/000500924.
    [5] WELLENS S, DEHOUCK L, CHANDRASEKARAN V, et al. Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound[J]. Toxicol In Vitro, 2021, 73: 105112. DOI: 10.1016/j.tiv.2021.105112.
    [6] TAN YC, ABDUL SATTAR M, AHMEDA AF, et al. Apocynin and catalase prevent hypertension and kidney injury in cyclosporine A-induced nephrotoxicity in rats[J]. PLoS One, 2020, 15(4): e0231472. DOI: 10.1371/journal.pone.0231472.
    [7] PHAN K, CHARLTON O, BAKER C, et al. Dermatologist attitudes toward ciclosporin use in atopic dermatitis[J]. J Dermatolog Treat, 2021, 32(8): 922-924. DOI: 10.1080/09546634.2020.1724251.
    [8] HOŠKOVÁ L, MÁLEK I, KOPKAN L, et al. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension[J]. Physiol Res, 2017, 66(2): 167-180. DOI: 10.33549/physiolres.933332.
    [9] PONTICELLI C, GLASSOCK RJ. Prevention of complications from use of conventional immunosuppressants: a critical review[J]. J Nephrol, 2019, 32(6): 851-870. DOI: 10.1007/s40620-019-00602-5.
    [10] NAGAVALLY RR, SUNILKUMAR S, AKHTAR M, et al. Chrysin ameliorates cyclosporine-A-induced renal fibrosis by inhibiting TGF-β1-induced epithelial-mesenchymal transition[J]. Int J Mol Sci, 2021, 22(19): 10252. DOI: 10.3390/ijms221910252.
    [11] WU Q, WANG X, NEPOVIMOVA E, et al. Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signalings[J]. Food Chem Toxicol, 2018, 118: 889-907. DOI: 10.1016/j.fct.2018.06.054.
    [12] GROENENDYK J, ROBINSON A, WANG Q, et al. Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(7): 1210-1216. DOI: 10.1016/j.bbagen.2019.04.016.
    [13] FANG M, KANG L, WANG X, et al. Inhibition of core fucosylation limits progression of diabetic kidney disease[J]. Biochem Biophys Res Commun, 2019, 520(3): 612-618. DOI: 10.1016/j.bbrc.2019.10.037.
    [14] YU A, ZHAO J, ZHONG J, et al. Altered O-glycomes of renal brush-border membrane in model rats with chronic kidney diseases[J]. Biomolecules, 2021, 11(11): 1560. DOI: 10.3390/biom11111560.
    [15] LIU A, WANG X, HU X, et al. Core fucosylation involvement in the paracrine regulation of proteinuria-induced renal interstitial fibrosis evaluated with the use of a microfluidic chip[J]. Acta Biomater, 2022, 142: 99-112. DOI: 10.1016/j.actbio.2022.02.020.
    [16] LI J, HSU HC, MOUNTZ JD, et al. Unmasking fucosylation: from cell adhesion to immune system regulation and diseases[J]. Cell Chem Biol, 2018, 25(5): 499-512. DOI: 10.1016/j.chembiol.2018.02.005.
    [17] MEHTA K, PATEL K, PANDYA S, et al. Altered mRNA expression of fucosyltransferases and fucosidase predicts prognosis in human oral carcinoma[J]. Int J Mol Cell Med, 2021, 10(2): 123-131. DOI: 10.22088/IJMCM.BUMS.10.2.123.
    [18] PARK S, LIM JM, CHUN JN, et al. Altered expression of fucosylation pathway genes is associated with poor prognosis and tumor metastasis in non small cell lung cancer[J]. Int J Oncol, 2020, 56(2): 559-567. DOI: 10.3892/ijo.2019.4953.
    [19] LAI TY, CHEN IJ, LIN RJ, et al. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells[J]. Cell Death Discov, 2019, 5: 74. DOI: 10.1038/s41420-019-0145-y.
    [20] LOONG JH, WONG TL, TONG M, et al. Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma[J]. J Clin Invest, 2021, 131(11): e143377. DOI: 10.1172/JCI143377.
    [21] HAN C, JIANG YH, LI W, et al. Astragalus membranaceus and salvia miltiorrhiza ameliorates cyclosporin A-induced chronic nephrotoxicity through the "gut-kidney axis"[J]. J Ethnopharmacol, 2021, 269: 113768. DOI: 10.1016/j.jep.2020.113768.
    [22] XIA Z, ZHANG C, GUO C, et al. Nanoformulation of a carbon monoxide releasing molecule protects against cyclosporin A-induced nephrotoxicity and renal fibrosis via the suppression of the NLRP3 inflammasome mediated TGF-β/Smad pathway[J]. Acta Biomater, 2022, 144: 42-53. DOI: 10.1016/j.actbio.2022.03.024.
    [23] LI R, GUO Y, ZHANG Y, et al. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways[J]. Int J Mol Sci, 2019, 20(5): 1103. DOI: 10.3390/ijms20051103.
    [24] BAI Y, WANG W, YIN P, et al. Ruxolitinib alleviates renal interstitial fibrosis in UUO mice[J]. Int J Biol Sci, 2020, 16(2): 194-203. DOI: 10.7150/ijbs.39024.
    [25] GENG XQ, MA A, HE JZ, et al. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways[J]. Acta Pharmacol Sin, 2020, 41(5): 670-677. DOI: 10.1038/s41401-019-0324-7.
    [26] HUANG J, YAO X, WENG G, et al. Protective effect of curcumin against cyclosporine A induced rat nephrotoxicity[J]. Mol Med Rep, 2018, 17(4): 6038-6044. DOI: 10.3892/mmr.2018.8591.
    [27] FUJITA K, HATANO K, HASHIMOTO M, et al. Fucosylation in urological cancers[J]. Int J Mol Sci, 2021, 22(24): 13333. DOI: 10.3390/ijms222413333.
    [28] SHAN M, YANG D, DOU H, et al. Fucosylation in cancer biology and its clinical applications[J]. Prog Mol Biol Transl Sci, 2019, 162: 93-119. DOI: 10.1016/bs.pmbts.2019.01.002.
    [29] ZHANG B, CHEN X, RU F, et al. Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis[J]. Cell Death Dis, 2021, 12(9): 843. DOI: 10.1038/s41419-021-04137-1.
    [30] SHEN H, HE Q, DONG Y, et al. Upregulation of miRNA-1228-3p alleviates TGF-β-induced fibrosis in renal tubular epithelial cells[J]. Histol Histopathol, 2020, 35(10): 1125-1133. DOI: 10.14670/HH-18-242.
    [31] DENG G, CHEN L, ZHANG Y, et al. Fucosyltransferase 2 induced epithelial-mesenchymal transition via TGF-β/Smad signaling pathway in lung adenocarcinaoma[J]. Exp Cell Res, 2018, 370(2): 613-622. DOI: 10.1016/j.yexcr.2018.07.026.
  • 加载中
图(6)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  98
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-17
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回