留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

15-PGDH表达水平与肝癌肝移植临床预后关系研究

李海波 汪国营 曾凯宁 张剑文 唐晖 刘炜 杨扬

李海波, 汪国营, 曾凯宁, 等. 15-PGDH表达水平与肝癌肝移植临床预后关系研究[J]. 器官移植, 2020, 11(2): 247-252, 281. doi: 10.3969/j.issn.1674-7445.2020.02.010
引用本文: 李海波, 汪国营, 曾凯宁, 等. 15-PGDH表达水平与肝癌肝移植临床预后关系研究[J]. 器官移植, 2020, 11(2): 247-252, 281. doi: 10.3969/j.issn.1674-7445.2020.02.010
Li Haibo, Wang Guoying, Zeng Kaining, et al. Relationship between expression level of 15-PGDH and clinical prognosis of liver transplantation for hepatocellular carcinoma[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 247-252, 281. doi: 10.3969/j.issn.1674-7445.2020.02.010
Citation: Li Haibo, Wang Guoying, Zeng Kaining, et al. Relationship between expression level of 15-PGDH and clinical prognosis of liver transplantation for hepatocellular carcinoma[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 247-252, 281. doi: 10.3969/j.issn.1674-7445.2020.02.010

15-PGDH表达水平与肝癌肝移植临床预后关系研究

doi: 10.3969/j.issn.1674-7445.2020.02.010
基金项目: 

国家“十三五”重大科技专项 2017ZX10203205-006-001

国家重点研发计划项目 2017YFA0104304

国家自然科学基金 81770648

国家自然科学基金 81972286

广东省自然科学基金 2015A030312013

广东省自然科学基金 2018A030313259

广东省科技计划项目 2017B020209004

广东省科技计划项目 20169013

广东省科技计划项目 2017B030314027

广州市科技项目 2014Y2-00200

广州市科技项目 201604020001

详细信息
    通讯作者:

    杨扬,主任医师,博士研究生导师,研究方向为肝移植、移植免疫和干细胞在肝脏疾病的应用,Email:yysysu@163.com

  • 中图分类号: R617, R735.7

Relationship between expression level of 15-PGDH and clinical prognosis of liver transplantation for hepatocellular carcinoma

More Information
  • 摘要:   目的  探讨15-羟基前列腺素脱氢酶(15-PGDH)表达水平与肝细胞癌(肝癌)肝移植临床预后的关系。  方法  回顾性分析行肝癌肝移植术的94例受者临床资料。用免疫组织化学法检测所有受者病理组织切片中15-PGDH表达情况;分析15-PGDH蛋白表达水平与肝癌患者各项临床参数的关系;计算肝癌肝移植受者术后5年的无瘤生存率和总生存率;分析可能影响肝癌肝移植受者预后的独立危险因素。  结果  15-PGDH的表达水平与受者的年龄、Child-Pugh分级和术前甲胎蛋白(AFP)水平相关(均为P < 0.05)。15-PGDH低表达组受者的无瘤生存率和总生存率均显著低于15-PGDH高表达组受者(均为P < 0.05)。15-PGDH表达水平、肿瘤分化程度、美国癌症联合会(AJCC)分期是影响肝癌肝移植受者预后的独立危险因素(均为P < 0.05)。  结论  15-PGDH表达水平是影响肝癌肝移植受者预后的独立危险因素。

     

  • 图  1  肝癌组织中15-PGDH的染色情况(免疫组化,×200)

    注:A图示无表达;B图示弱阳性;C图示中等强度阳性;D图示强阳性。

    Figure  1.  Staining of 15-PGDH in hepatocellular carcinoma tissue

    图  2  肝癌肝移植受者无瘤生存率和总生存率的Kaplan-Meier曲线

    Figure  2.  Kaplan-meier curves for tumor-free survival and overall survival in liver transplant recipients withhepatocellular carcinoma

    表  1  15-PGDH与肝癌肝移植受者各项临床参数的相关性

    Table  1.   Correlation between 15-PGDH and clinical parameters of liver transplant recipients with hepatocellular carcinoma[n(%)]

    临床参数 15-PGDH表达水平 P
      低表达组
    n=54)
    高表达组
    n=40)
    性别 0.637
      男 50(93) 38(95)
      女 4(7) 2(5)
    年龄 0.013
      ≥50岁 38(70) 18(45)
       < 50岁 16(30) 22(55)
    肿瘤数目 0.095
      1个 23(43) 24(60)
      ≥2个 31(57) 16(40)
    术前AFP水平 0.027
      ≤400 μg/L 24(44) 27(68)
       > 400 μg/L 30(56) 13(32)
    Child-Pugh分级 0.028
      A 30(56) 30(75)
      B 20(37) 5(13)
      C 4(7) 5(13)
    AJCC分期 0.170
      Ⅰ 10(19) 14(35)
      Ⅱ 11(20) 8(20)
      Ⅲ 33(61) 18(45)
    肿瘤大小 0.05
       < 5 cm 20(37) 25(63)
      5~8 cm 11(20) 5(13)
       > 8 cm 23(43) 10(25)
    分化程度 0.295
      高 13(24) 12(30)
      中 33(61) 26(65)
      低 8(15) 2(5)
    大血管侵犯 0.09
      有 27(50) 13(33)
      无 27(50) 27(68)
    米兰标准 0.294
      符合 16(30) 16(40)
      不符合 38(70) 24(60)
    乙型或丙型病毒性肝炎标志物 0.219
      阳性 52(96) 40(100)
      阴性 2(4) 0(0)
    下载: 导出CSV

    表  2  肝癌肝移植受者预后的危险因素分析

    Table  2.   Analysis of risk factors for prognosis of liver transplant recipients with hepatocellular carcinoma

    变量 单因素分析 多因素分析
    HR 95%CI P HR 95%CI P
    15-PGDH 0.419 0.233~0.753 0.004 0.445 0.246~0.804 0.007
    年龄 0.542 0.305~0.964 0.037 0.446
    Child-Pugh分级 1.446 1.014~2.063 0.042 0.666
    分化程度 2.513 1.532~4.122 < 0.001 2.549 1.551~4.187 < 0.001
    AJCC分期 2.222 1.497~3.298 < 0.001 2.137 1.454~3.140 < 0.001
    大血管侵犯 2.991 1.729~5.175 < 0.001 0.609
    术前AFP水平 2.402 1.389~4.153 0.002 0.137
    肿瘤大小 1.698 1.268~2.275 < 0.001 0.308
    注:①HR为风险比。
      ②CI为可信区间。
    下载: 导出CSV
  • [1] KHEMLINA G, IKEDA S, KURZROCK R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies[J]. Mol Cancer, 2017, 16(1):149. DOI: 10.1186/s12943-017-0712-x.
    [2] SANTOPAOLO F, LENCI I, MILANA M, et al. Liver transplantation for hepatocellular carcinoma: where do we stand?[J]. World J Gastroenterol, 2019, 25(21):2591-2602. DOI: 10.3748/wjg.v25.i21.2591.
    [3] SAPISOCHIN G, BRUIX J. Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(4):203-217. DOI: 10.1038/nrgastro.2016.193.
    [4] GUNSAR F. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria[J]. Exp Clin Transplant, 2017, 15(Suppl 2):59-64. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM18727702
    [5] PAVEL MC, FUSTER J. Expansion of the hepatocellular carcinoma Milan criteria in liver transplantation: future directions[J]. World J Gastroenterol, 2018, 24(32):3626-3636. DOI: 10.3748/wjg.v24.i32.3626.
    [6] LEE JE, ZHONG X, LEE JY, et al. 15-Keto prostaglandin E2 induces heme oxygenase-1 expression through activation of Nrf2 in human colon epithelial CCD 841 CoN cells[J]. Arch Biochem Biophys, 2019:108162. DOI: 10.1016/j.abb.2019.108162.
    [7] PRIMA V, KALIBEROVA LN, KALIBEROV S, et al. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells[J]. Proc Natl Acad Sci U S A, 2017, 114(5):1117-1122. DOI: 10.1073/pnas.1612920114.
    [8] KIM HB, KIM M, PARK YS, et al. Prostaglandin E2 activates YAP and a positive-signaling loop to promote colon regeneration after colitis but also carcinogenesis in mice[J]. Gastroenterology, 2017, 152(3):616-630. DOI: 10.1053/j.gastro.2016.11.005.
    [9] CORWIN C, NIKOLOPOULOU A, PAN AL, et al. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets[J]. J Neuroinflammation, 2018, 15(1):272. DOI: 10.1186/s12974-018-1305-3.
    [10] AL-NAJJAR BO. Investigation of 15-hydroxyprostaglandin dehydrogenase catalytic reaction mechanism by molecular dynamics simulations[J]. J Mol Graph Model, 2018, 80:190-196. DOI: 10.1016/j.jmgm.2018.01.012.
    [11] JANG HO, LEE HN, WOO JH, et al. 15-Deoxy-Δ12, 14-prostaglandin J2 up-regulates the expression of 15-hydroxyprostaglandin dehydrogenase through DNA methyltransferase 1 inactivation[J]. Free Radic Res, 2019, 53(3):335-347. DOI: 10.1080/10715762.2019.1576867.
    [12] YIN J, XIA W, ZHANG Y, et al. Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells[J]. Heart Vessels, 2018, 33(11):1411-1422. DOI: 10.1007/s00380-018-1190-9.
    [13] ZHANG S, LIU J, YANG M, et al. Single nucleotide polymorphism rs2555639 in 15-PGDH and colorectal cancer metastasis[J]. J BUON, 2019, 24(4):1507-1511.
    [14] PARK JM, NA HK. 15-Deoxy-Δ12, 14-prostaglandin J2 upregulates the expression of 15-hydroxyprostaglandin dehydrogenase by inducing AP-1 activation and heme oxygenase-1 expression in human colon cancer cells[J]. J Cancer Prev, 2019, 24(3):183-191. DOI: 10.15430/JCP. 2019.24.3.183.
    [15] ARIMA K, OHMURAYA M, MIYAKE K, et al. Inhibition of 15-PGDH causes Kras-driven tumor expansion through prostaglandin E2-ALDH1 signaling in the pancreas[J]. Oncogene, 2019, 38(8):1211-1224. DOI: 10.1038/s41388-018-0510-y.
    [16] PARK YS, LEE JH, JUNG DB, et al. MicroRNA-21 induces loss of 15-hydroxyprostaglandin dehydrogenase in early gastric tubular adenocarcinoma[J]. Sci Rep, 2018, 8(1):17717. DOI: 10.1038/s41598-018-36139-z.
    [17] ARIMA K, KOMOHARA Y, BU L, et al. Downregulation of15-hydroxyprostaglandin dehydrogenase by interleukin-1βfrom activated macrophages leads to poor prognosis in pancreatic cancer[J]. Cancer Sci, 2018, 109(2):462-470. DOI: 10.1111/cas.13467.
    [18] ZHAO J, WEN S, WANG X, et al. Helicobacter pylori modulates cyclooxygenase-2 and 15-hydroxy prostaglandin dehydrogenase in gastric cancer[J]. Oncol Lett, 2017, 14(5):5519-5525. DOI: 10.3892/ol.2017.6843.
    [19] YANG DH, RYU YM, LEE SM, et al. 15-Hydroxyprostaglandin dehydrogenase as a marker in colon carcinogenesis: analysis of the prostaglandin pathway in human colonic tissue[J]. Intest Res, 2017, 15(1):75-82. DOI: 10.5217/ir.2017.15.1.75.
    [20] YANG JE, PARK E, LEE HJ, et al. Role of 15-hydroxyprostaglandin dehydrogenase down-regulation on the prognosis of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2014, 20(1):28-37. DOI: 10.3350/cmh.2014.20.1.28.
    [21] CASTRO-SÁNCHEZ L, AGRA N, LLORENTE IZQUIERDO C, et al. Regulation of 15-hydroxyprostaglandin dehydrogenase expression in hepatocellular carcinoma[J]. Int J Biochem Cell Biol, 2013, 45(11):2501-2511. DOI: 10.1016/j.biocel.2013.08.005.
    [22] LORENTE L. New prognostic biomarkers of mortality in patients undergoing liver transplantation for hepatocellular carcinoma[J]. World J Gastroenterol, 2018, 24(37):4230-4242. DOI: 10.3748/wjg.v24.i37.4230.
    [23] ZHENG J, CAI J, LI H, et al. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio as prognostic predictors for hepatocellular carcinoma patients with various treatments: a Meta-analysis and systematic review[J]. Cell Physiol Biochem, 2017, 44(3):967-981. DOI: 10.1159/000485396.
    [24] MORI S, CHOI Y, PARK MS, et al. Usefulness of preoperative C-reactive protein and alpha-fetoprotein levels for prognostication of patients with hepatocellular carcinoma after living donor liver transplantation[J]. Hepatogastroenterology, 2014, 61(136):2353-2358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=24c277780b0fbe1983c8b45ba2c22a5e
    [25] WANG J, CHO NL, ZAUBER AG, et al. Chemopreventive efficacy of the cyclooxygenase-2 (Cox-2) inhibitor, celecoxib, is predicted by adenoma expression of Cox-2 and 15-PGDH[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(7):728-736. DOI: 10.1158/1055-9965.EPI-17-0573.
    [26] MEHDAWI LM, SATAPATHY SR, GUSTAFSSON A, et al. A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells[J]. Oncotarget, 2017, 8(21):35033-35047. DOI: 10.18632/oncotarget.16591.
    [27] ALGRA AM, ROTHWELL PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials[J]. Lancet Oncol, 2012, 13(5):518-527. DOI: 10.1016/S1470-2045(12)70112-2.
    [28] BURN J, GERDES AM, MACRAE F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial[J]. Lancet, 2011, 378(9809):2081-2087. DOI: 10.1016/S0140-6736(11)61049-0.
    [29] FINK SP, DAWSON DM, ZHANG Y, et al. Sulindac reversal of 15-PGDH-mediated resistance to colon tumor chemoprevention with NSAIDs[J]. Carcinogenesis, 2015, 36(2):291-298. DOI: 10.1093/carcin/bgu241.
    [30] TAI HH, CHI X, TONG M. Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs)[J]. Prostaglandins Other Lipid Mediat, 2011, 96(1/2/3/4):37-40. DOI: 10.1016/j.prostaglandins.2011.06.005.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  29
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回