留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

器官移植排斥反应风险生物标志物研究进展

石炳毅 陈文 刘志佳

石炳毅, 陈文, 刘志佳. 器官移植排斥反应风险生物标志物研究进展[J]. 器官移植, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003
引用本文: 石炳毅, 陈文, 刘志佳. 器官移植排斥反应风险生物标志物研究进展[J]. 器官移植, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003
Shi Bingyi, Chen Wen, Liu Zhijia. Research progress on biomarkers of rejection risk in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003
Citation: Shi Bingyi, Chen Wen, Liu Zhijia. Research progress on biomarkers of rejection risk in organ transplantation[J]. ORGAN TRANSPLANTATION, 2020, 11(2): 194-198. doi: 10.3969/j.issn.1674-7445.2020.02.003

器官移植排斥反应风险生物标志物研究进展

doi: 10.3969/j.issn.1674-7445.2020.02.003
基金项目: 

国家自然科学基金 81570680

国家自然科学基金 81571555

详细信息
    作者简介:

    石炳毅,主任医师、教授、博士研究生导师、技术2级,第十届全国政协委员,获国务院政府特殊津贴、何梁何利科技进步奖和中国医师奖。现任中国人民解放军总医院第八医学中心全军器官移植研究所所长、国家临床重点专科军队建设项目负责人、北京市器官移植与免疫调节重点实验室主任。兼任中国人体器官捐献与移植委员会委员、中华医学会器官移植学分会主任委员兼肾脏移植学组组长、中国医师协会器官移植医师分会副会长兼肾脏移植专业委员会主任委员、中国研究型医院学会移植医学专业委员会主任委员、中国生物医学工程学会透析移植分会副主任委员等学术职务。兼任《器官移植》、《中华器官移植杂志》、《中华移植杂志(电子版)》、《中华细胞与干细胞杂志(电子版)》和《实用器官移植电子杂志》副总编辑。以第一负责人承担国家863课题、国家科技部“十一五计划”科技支撑重大项目和国家自然科学基金等课题20余项。以第一完成人获国家科技进步二等奖1项,中华医学科技一等奖2项,军队医疗成果一、二等奖及北京市科技进步二等奖等5项

    通讯作者:

    石炳毅,Email:shibingyi666@126.com

  • 中图分类号: R617, R392.4

Research progress on biomarkers of rejection risk in organ transplantation

More Information
  • 摘要: 排斥反应是引起移植失败的最主要原因,目前临床采用的指标特异度和灵敏度均较差,不能精准地提示排斥反应的确切病因,寻找新的排斥反应监测标志物具有十分重要的临床意义。本文从移植病理学、免疫细胞与调节性免疫细胞、非人类白细胞抗原抗体、外泌体、游离DNA、组合基因预测等方面,总结了近年来器官移植排斥反应风险生物标志物研究的最新进展,为器官移植排斥反应预警和治疗提供参考。

     

  • [1] PASSERINI P, MALVICA S, TRIPODI F, et al. Membranous nephropathy (MN) recurrence after renal transplantation[J]. Front Immunol, 2019, 10:1326. DOI: 10.3389/fimmu.2019.01326.
    [2] HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2):293-307. DOI: 10.1111/ajt.14625.
    [3] SIS B, JHANGRI GS, BUNNAG S, et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining[J]. Am J Transplant, 2009, 9(10):2312-2323. DOI: 10.1111/j.1600-6143.2009.02761.x.
    [4] LOUPY A, DUONG VAN HUYEN JP, HIDALGO L, et al. Gene expression profiling for the identification and classification of antibody-mediated heart rejection[J]. Circulation, 2017, 135(10):917-935. DOI: 10.1161/CIRCULATIONAHA.116.022907.
    [5] HERMSEN M, DE BEL T, DEN BOER M, et al. Deep learning-based histopathologic assessment of kidney tissue[J]. J Am Soc Nephrol, 2019, 30(10):1968-1979. DOI: 10.1681/ASN.2019020144.
    [6] LOUPY A, AUBERT O, ORANDI BJ, et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study[J]. BMJ, 2019, 366: l4923. DOI: 10.1136/bmj.l4923.
    [7] CHEN W, BAI J, HUANG H, et al. Low proportion of follicular regulatory T cell in renal transplant patients with chronic antibody-mediated rejection[J]. Sci Rep, 2017, 7(1):1322. DOI: 10.1038/s41598-017-01625-3.
    [8] LUQUE S, LÚCIA M, MELILLI E, et al. Value of monitoring circulating donor-reactive memory B cells to characterize antibody-mediated rejection after kidney transplantation[J]. Am J Transplant, 2019, 19(2):368-380. DOI: 10.1111/ajt.15055.
    [9] 石炳毅.调节性免疫细胞网络在移植免疫中的作用[J].中华医学杂志, 2011, 91(44):3154-3157.DOI:10. 3760/cma.j.issn.0376-2491.2011.44.018.

    SHI BY. The role of regulatory immune cell network in transplantation immunity[J]. Natl Med J China, 2011, 91(44): 3154-3157. DOI: 10.3760/cma.j.issn.0376-2491.2011.44.018.
    [10] MCRAE JL, CHIA JS, POMMEY SA, et al. Evaluation of CD4+ CD25+/- CD39+ T-cell populations in peripheral blood of patients following kidney transplantation and during acute allograft rejection[J]. Nephrology (Carlton), 2017, 22(7):505-512. DOI: 10.1111/nep.12894.
    [11] SAITO T, NISHIKAWA H, WADA H, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers[J]. Nat Med, 2016, 22(6):679-684. DOI: 10.1038/nm.4086.
    [12] YANG S, SHENG X, XIANG D, et al. CD150highTreg cells may attenuate graft versus host disease and intestinal cell apoptosis after hematopoietic stem cell transplantation[J]. Am J Transl Res, 2019, 11(3):1299-1310. http://www.ncbi.nlm.nih.gov/pubmed/30972163
    [13] LINO AC, DANG VD, LAMPROPOULOU V, et al. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells[J]. Immunity, 2018, 49(1):120-133. DOI: 10.1016/j.immuni.2018.06.007.
    [14] PEARL MH, ZHANG Q, PALMA DIAZ MF, et al. Angiotensin Ⅱ type 1 receptor antibodies are associated with inflammatory cytokines and poor clinical outcomes in pediatric kidney transplantation[J]. Kidney Int, 2018, 93(1):260-269. DOI: 10.1016/j.kint.2017.06.034.
    [15] REINDL-SCHWAIGHOFER R, HEINZEL A, OBERBAUER R. Genomic mismatch at LIMS1 locus and kidney allograft rejection[J]. N Engl J Med, 2019, 381(9): e16. DOI: 10.1056/NEJMc1908072.
    [16] LI X, LI JJ, YANG JY, et al. Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model[J]. PLoS One, 2012, 7(8): e44045. DOI: 10.1371/journal.pone.0044045.
    [17] WEN D, PENG Y, LIU D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238:166-175. DOI: 10.1016/j.jconrel.2016.07.044.
    [18] SHARMA M, LIU W, PERINCHERI S, et al. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin[J]. Am J Transplant, 2018, 18(7):1626-1635. DOI: 10.1111/ajt.14650.
    [19] YANG J, BI L, HE X, et al. Follicular helper T cell derived exosomes promote B cell proliferation and differentiation in antibody-mediated rejection after renal transplantation[J]. Biomed Res Int, 2019: 6387924. DOI: 10.1155/2019/6387924.
    [20] SCHÜTZ E, FISCHER A, BECK J, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study[J]. PLoS Med, 2017, 14(4):e1002286. DOI: 10.1371/journal.pmed.1002286.
    [21] BECK J, BIERAU S, BALZER S, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury[J]. Clin Chem, 2013, 59(12):1732-1741. DOI: 10.1373/clinchem.2013.210328.
    [22] SIGDEL TK, ARCHILA FA, CONSTANTIN T, et al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR[J]. J Clin Med, 2018, 8(1): E19. DOI: 10.3390/jcm8010019.
    [23] VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46:463-472. DOI: 10.1016/j.ebiom. 2019.07.028.
    [24] ZHANG W, YI Z, KEUNG KL, et al. A peripheral blood gene expression signature to diagnose subclinical acute rejection[J]. J Am Soc Nephrol, 2019, 30(8):1481-1494. DOI: 10.1681/ASN.2018111098.
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  147
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2020-03-15

目录

    /

    返回文章
    返回