留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声造影技术在肾移植术后急性排斥反应中的应用进展

冷强华, 韩飞, 黄正宇. 超声造影技术在肾移植术后急性排斥反应中的应用进展[J]. 器官移植, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007
引用本文: 冷强华, 韩飞, 黄正宇. 超声造影技术在肾移植术后急性排斥反应中的应用进展[J]. 器官移植, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007
Leng Qianghua, Han Fei, Huang Zhengyu. Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007
Citation: Leng Qianghua, Han Fei, Huang Zhengyu. Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 514-520. doi: 10.3969/j.issn.1674-7445.2023.04.007

超声造影技术在肾移植术后急性排斥反应中的应用进展

doi: 10.3969/j.issn.1674-7445.2023.04.007
基金项目: 

国家自然科学基金 81970649

国家自然科学基金青年基金 82200847

中国博士后科学基金 2020M683083

详细信息
    作者简介:
    通讯作者:

    黄正宇(ORCID:0009-0008-1388-8391),博士,主任医师,研究方向为抗体介导的排斥反应和肾脏缺血-再灌注损伤的机制研究,Email:hzhengy@mail.sysu.edu.cn

  • 中图分类号: R617, R445.1

Application progress on contrast-enhanced ultrasound in acute rejection after kidney transplantation

More Information
  • 摘要: 急性排斥反应的早期诊断对于移植肾功能保护具有重要意义。病理穿刺活组织检查是诊断移植肾急性排斥反应的金标准,但随之可能出现的出血、感染、肾实质损伤等并发症限制了其应用。近年来,超声造影技术诊断急性排斥反应的灵敏度不断提升,其中靶向超声微泡技术更是进一步提升了超声造影技术诊断的特异度,使其替代病理穿刺活组织检查成为可能。此外,在急性排斥反应治疗领域,空化的超声微泡可以通过诱发声孔效应,促进免疫抑制药局部传递而发挥其抗排斥反应作用。本文对超声造影技术在肾移植术后急性排斥反应的诊断及治疗中的应用进行总结,为超声造影技术在肾移植中进一步应用提供参考。

     

  • [1] BECKER JU, SERON D, RABANT M, et al. Evolution of the definition of rejection in kidney transplantation and its use as an endpoint in clinical trials[J]. Transpl Int, 2022, 35: 10141. DOI: 10.3389/ti.2022.10141.
    [2] FATTHY M, SALEH A, AHMED RA, et al. Incidence and determinants of complications of percutaneous kidney biopsy in a large cohort of native kidney and kidney transplant recipients[J]. Sultan Qaboos Univ Med J, 2022, 22(2): 268-273. DOI: 10.18295/squmj.5.2021.107.
    [3] SIDHU PS, CANTISANI V, DIETRICH CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (long version)[J]. Ultraschall Med, 2018, 39(2): e2-e44. DOI: 10.1055/a-0586-1107.
    [4] ZHANG L, LIN Z, ZENG L, et al. Ultrasound-induced biophysical effects in controlled drug delivery[J]. Sci China Life Sci, 2022, 65(5): 896-908. DOI: 10.1007/s11427-021-1971-x.
    [5] GRANATA A, CAMPO I, LENTINI P, et al. Role of contrast-enhanced ultrasound (CEUS) in native kidney pathology: limits and fields of action[J]. Diagnostics (Basel), 2021, 11(6): 1058. DOI: 10.3390/diagnostics11061058.
    [6] LI Q, YANG K, JI Y, et al. Safety analysis of adverse events of ultrasound contrast agent Lumason/SonoVue in 49, 100 patients[J]. Ultrasound Med Biol, 2023, 49(2): 454-459. DOI: 10.1016/j.ultrasmedbio.2022.09.014.
    [7] MORGAN TA, JHA P, PODER L, et al. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow[J]. Abdom Radiol (NY), 2018, 43(10): 2604-2614. DOI: 10.1007/s00261-018-1585-1.
    [8] MUELLER-PELTZER K, NEGRÃO DE FIGUEIREDO G, FISCHEREDER M, et al. Vascular rejection in renal transplant: diagnostic value of contrast-enhanced ultrasound (CEUS) compared to biopsy[J]. Clin Hemorheol Microcirc, 2018, 69(1/2): 77-82. DOI: 10.3233/CH-189115.
    [9] HAI Y, CHONG W, LIU JB, et al. The diagnostic value of contrast-enhanced ultrasound for monitoring complications after kidney transplantation-a systematic review and meta-analysis[J]. Acad Radiol, 2021, 28(8): 1086-1093. DOI: 10.1016/j.acra.2020.05.009.
    [10] LERCHBAUMER MH, FISCHER T, ULUK D, et al. Diagnostic value of contrast-enhanced ultrasound (CEUS) in kidney allografts - 12 years of experience in a tertiary referral center[J]. Clin Hemorheol Microcirc, 2022, 82(1): 75-83. DOI: 10.3233/CH-211357.
    [11] SELBY NM, WILLIAMS JP, PHILLIPS BE. Application of dynamic contrast enhanced ultrasound in the assessment of kidney diseases[J]. Curr Opin Nephrol Hypertens, 2021, 30(1): 138-143. DOI: 10.1097/MNH.0000000000000664.
    [12] GOYAL A, HEMACHANDRAN N, KUMAR A, et al. Evaluation of the graft kidney in the early postoperative period: performance of contrast-enhanced ultrasound and additional ultrasound parameters[J]. J Ultrasound Med, 2021, 40(9): 1771-1783. DOI: 10.1002/jum.15557.
    [13] VIČIČ E, KOJC N, HOVELJA T, et al. Quantitative contrast-enhanced ultrasound for the differentiation of kidney allografts with significant histopathological injury[J]. Microcirculation, 2021, 28(8): e12732. DOI: 10.1111/micc.12732.
    [14] KIM DG, LEE JY, AHN JH, et al. Quantitative ultrasound for non-invasive evaluation of subclinical rejection in renal transplantation[J]. Eur Radiol, 2023, 33(4): 2367-2377. DOI: 10.1007/s00330-022-09260-x.
    [15] FRIEDL S, JUNG EM, BERGLER T, et al. Factors influencing the time-intensity curve analysis of contrast-enhanced ultrasound in kidney transplanted patients: toward a standardized contrast-enhanced ultrasound examination[J]. Front Med (Lausanne), 2022, 9: 928567. DOI: 10.3389/fmed.2022.928567.
    [16] AGGARWAL A, GOSWAMI S, DAS CJ. Contrast-enhanced ultrasound of the kidneys: principles and potential applications[J]. Abdom Radiol (NY), 2022, 47(4): 1369-1384. DOI: 10.1007/s00261-022-03438-z.
    [17] DAVID E, DEL GAUDIO G, DRUDI FM, et al. Contrast enhanced ultrasound compared with MRI and CT in the evaluation of post-renal transplant complications[J]. Tomography, 2022, 8(4): 1704-1715. DOI: 10.3390/tomography8040143.
    [18] ELEC FI, MOISOIU T, SOCACIU MA, et al. Difficulties in diagnosing HIV-associated nephropathy in kidney transplanted patients. the role of ultrasound and CEUS[J]. Med Ultrason, 2020, 22(4): 488-491. DOI: 10.11152/mu-2314.
    [19] KHODABAKHSHI Z, HOSSEINKHAH N, GHADIRI H. Pulsating microbubble in a micro-vessel and mechanical effect on vessel wall: a simulation study[J]. J Biomed Phys Eng, 2021, 11(5): 629-640. DOI: 10.31661/jbpe.v0i0.1131.
    [20] LUKÁČ R, KAUEROVÁ Z, MAŠEK J, et al. Preparation of metallochelating microbubbles and study on their site-specific interaction with rGFP-HisTag as a model protein[J]. Langmuir, 2011, 27(8): 4829-4837. DOI: 10.1021/la104677b.
    [21] KLIBANOV AL. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging[J]. Bioconjug Chem, 2005, 16(1): 9-17. DOI: 10.1021/bc049898y.
    [22] GRABNER A, KENTRUP D, PAWELSKI H, et al. Renal contrast-enhanced sonography findings in a model of acute cellular allograft rejection[J]. Am J Transplant, 2016, 16(5): 1612-1619. DOI: 10.1111/ajt.13648.
    [23] LIU J, CHEN Y, WANG G, et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes[J]. Biomaterials, 2018, 162: 200-207. DOI: 10.1016/j.biomaterials.2018.02.017.
    [24] XIE Y, CHEN Y, ZHANG L, et al. Ultrasound molecular imaging of lymphocyte-endothelium adhesion cascade in acute cellular rejection of cardiac allografts[J]. Transplantation, 2019, 103(8): 1603-1611. DOI: 10.1097/TP.0000000000002698.
    [25] 郝军军, 郭锋伟. 补体C4d、高敏C反应蛋白及肾移植术后Th1、Th2水平与排斥反应的相关性[J]. 中国临床研究, 2022, 35(10): 1356-1360, 1365. DOI: 10.13429/j.cnki.cjcr.2022.10.005.

    HAO JJ, GUO FW. Associations of complement C4d, hs-CRP and Th1, Th2 levels with rejection after renal transplantation[J]. Chin J Clin Res, 2022, 35(10): 1356-1360, 1365. DOI: 10.13429/j.cnki.cjcr.2022.10.005.
    [26] LIAO T, ZHANG Y, REN J, et al. Noninvasive quantification of intrarenal allograft C4d deposition with targeted ultrasound imaging[J]. Am J Transplant, 2019, 19(1): 259-268. DOI: 10.1111/ajt.15105.
    [27] LIAO T, LIU X, REN J, et al. Noninvasive and quantitative measurement of C4d deposition for the diagnosis of antibody-mediated cardiac allograft rejection[J]. EBioMedicine, 2018, 37: 236-245. DOI: 10.1016/j.ebiom.2018.10.061.
    [28] HAAS M, LOUPY A, LEFAUCHEUR C, et al. The Banff 2017 Kidney Meeting report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials[J]. Am J Transplant, 2018, 18(2): 293-307. DOI: 10.1111/ajt.14625.
    [29] 邹孝猛, 毛盈譞, 张羽, 等. 超声靶向微泡破坏实现肿瘤递药研究进展[J]. 中国医学影像技术, 2022, 38(11): 1739-1742. DOI: 10.13929/j.issn.1003-3289.2022.11.033.

    ZOU XM, MAO YX, ZHANG Y, et al. Progresses of ultrasound targeted microbubble destruction for antineoplastic drug delivery[J]. Chin J Med Imag Technol, 2022, 38(11): 1739-1742. DOI: 10.13929/j.issn.1003-3289.2022.11.033.
    [30] 许涛, 周畅. 靶向微泡介导超声辅助溶栓技术研究进展[J]. 实用医学杂志, 2022, 38(10): 1187-1192. DOI: 10.3969/j.issn.1006-5725.2022.10.003.

    XU T, ZHOU C. Progress in targeted microbubble mediated ultrasound assisted thrombolysis[J]. J Pract Med, 2022, 38(10): 1187-1192. DOI: 10.3969/j.issn.1006-5725.2022.10.003.
    [31] XIA H, YANG D, HE W, et al. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier[J]. Transl Oncol, 2021, 14(10): 101177. DOI: 10.1016/j.tranon.2021.101177.
    [32] LIAO T, LI Q, ZHANG Y, et al. Precise treatment of acute antibody-mediated cardiac allograft rejection in rats using C4d-targeted microbubbles loaded with nitric oxide[J]. J Heart Lung Transplant, 2020, 39(5): 481-490. DOI: 10.1016/j.healun.2020.02.002.
    [33] LIU J, CHEN Y, WANG G, et al. Improving acute cardiac transplantation rejection therapy using ultrasound-targeted FK506-loaded microbubbles in rats[J]. Biomater Sci, 2019, 7(9): 3729-3740. DOI: 10.1039/c9bm00301k.
    [34] LUO Z, JI Y, ZHOU H, et al. Galectin-7 in cardiac allografts in mice: increased expression compared with isografts and localization in infiltrating lymphocytes and vascular endothelial cells[J]. Transplant Proc, 2013, 45(2): 630-634. DOI: 10.1016/j.transproceed.2012.12.005.
    [35] ZLATEV I, CASTORENO A, BROWN CR, et al. Reversal of siRNA-mediated gene silencing in vivo[J]. Nat Biotechnol, 2018, 36(6): 509-511. DOI: 10.1038/nbt.4136.
    [36] ALSHAER W, ZUREIGAT H, AL KARAKI A, et al. siRNA: mechanism of action, challenges, and therapeutic approaches[J]. Eur J Pharmacol, 2021, 905: 174178. DOI: 10.1016/j.ejphar.2021.174178.
    [37] PAUNOVSKA K, LOUGHREY D, DAHLMAN JE. Drug delivery systems for RNA therapeutics[J]. Nat Rev Genet, 2022, 23(5): 265-280. DOI: 10.1038/s41576-021-00439-4.
    [38] WANG Z, JIANG S, LI S, et al. Targeted galectin-7 inhibition with ultrasound microbubble targeted gene therapy as a sole therapy to prevent acute rejection following heart transplantation in a rodent model[J]. Biomaterials, 2020, 263: 120366. DOI: 10.1016/j.biomaterials.2020.120366.
  • 加载中
图(1)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  58
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-01
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回