留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GDF15在肾移植缺血-再灌注损伤中的作用及机制研究

朱杰夫, 师朗, 宋志霞, 等. GDF15在肾移植缺血-再灌注损伤中的作用及机制研究[J]. 器官移植, 2022, 13(6): 749-756. doi: 10.3969/j.issn.1674-7445.2022.06.009
引用本文: 朱杰夫, 师朗, 宋志霞, 等. GDF15在肾移植缺血-再灌注损伤中的作用及机制研究[J]. 器官移植, 2022, 13(6): 749-756. doi: 10.3969/j.issn.1674-7445.2022.06.009
Zhu Jiefu, Shi Lang, Song Zhixia, et al. Role and mechanism of GDF15 in ischemia-reperfusion injury during kidney transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 749-756. doi: 10.3969/j.issn.1674-7445.2022.06.009
Citation: Zhu Jiefu, Shi Lang, Song Zhixia, et al. Role and mechanism of GDF15 in ischemia-reperfusion injury during kidney transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(6): 749-756. doi: 10.3969/j.issn.1674-7445.2022.06.009

GDF15在肾移植缺血-再灌注损伤中的作用及机制研究

doi: 10.3969/j.issn.1674-7445.2022.06.009
基金项目: 

国家自然科学基金 82100803

湖北省自然科学基金 2021CFB101

详细信息
    作者简介:
    通讯作者:

    吴雄飞,Email: wuxfei@126.com

  • 中图分类号: R617, R692

Role and mechanism of GDF15 in ischemia-reperfusion injury during kidney transplantation

More Information
  • 摘要:   目的  探讨生长与分化因子(GDF)15在肾移植缺血-再灌注损伤(IRI)中的作用及机制。  方法  选取野生型供体小鼠9只,野生型受体小鼠9只,分别于术后4、24、72 h取3只受体小鼠的移植肾,进行GDF家族转录组学分析,检测各组肾组织GDF15的表达情况。选取野生型供体小鼠5只,GDF15敲除型供体小鼠5只,野生型受体小鼠10只,根据实验方案将小鼠分为野生型假手术组、野生型移植组、GDF15敲除假手术组、GDF15敲除移植组,于术后72 h提取血清及肾组织样本,对比各组肾功能、肾小管损伤情况、炎症细胞浸润、炎症因子及Toll样受体4(TLR4)、核因子(NF)-κB表达水平。选取野生型供体小鼠9只,GDF15敲除型供体小鼠9只,野生型受体小鼠18只,根据实验方案将小鼠分为野生型移植组、GDF15敲除移植组,观察肾移植术后两组生存率。  结果  GDF15是移植肾转录组学中上调最多的GDF家族基因,主要在肾小管中表达。与假手术组比较,移植组小鼠肾功能下降;与野生型移植组比较,GDF15敲除移植组小鼠血清肌酐、血尿素氮水平升高(均为P < 0.05)。野生型移植组小鼠术后1周生存率为87.6%,GDF15敲除移植组小鼠术后1周生存率为41.8%。GDF15敲除移植组肾损伤分子(KIM)-1表达增多,肾小管损伤评分更高。野生型移植组肾小管可见溶解或坏死,髓外和皮质中可见管型形成,而GDF15敲除移植组肾小管坏死及管型更加明显。移植组髓过氧化物酶(MPO)和F4/80表达增多,且GDF15敲除移植组炎症细胞浸润加重。与假手术组比较,移植组肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β和IL-6表达水平升高;与野生型移植组比较,GDF15敲除移植组TNF-α、IL-1β和IL-6表达水平升高(均为P < 0.05)。移植组肾组织中TLR4、NF-κB表达较假手术组增多;GDF15敲除移植组肾组织中TLR4和NF-κB表达较野生型移植组增多。  结论  GDF15可减轻移植肾IRI,其作用机制可能与抑制TLR4-NF-κB信号通路有关。

     

  • 图  1  模型建立方法与实验方案

    注:A图为GDF15敲除方案;B图为GDF15敲除后蛋白质印迹法检测结果;C图为动物实验方案。

    Figure  1.  Model building method and experimental scheme

    图  2  GDF家族转录组学

    注:FPKM为每千个碱基的转录每百万映射读取的片段(fragments per kilobase of exon model per million mapped fragments);与假手术组比较,aP < 0.05。

    Figure  2.  Transcriptome of GDF family

    图  3  各组小鼠肾组织GDF15蛋白的表达情况及病理学结果

    注:A图为GDF15蛋白质印迹法检测结果;B图为各组GDF15免疫组化染色结果(×400);C图为各组HE染色结果(×400)。

    Figure  3.  Expression of GDF15 protein and histopathological results of renal tissue in mice of each group

    图  4  各组小鼠术后肾功能及生存率

    注:A图为各组小鼠血清肌酐水平;B图为各组小鼠血尿素氮水平;C图为两组鼠移植后的生存曲线;与假手术组比较,aP < 0.05;与野生型移植组比较,bP < 0.05。

    Figure  4.  Renal function and survival rate of mice in each group after operation

    图  5  各组小鼠肾小管损伤情况及肾小管损伤评分

    注:A图为各组小鼠肾组织KIM-1表达情况(免疫组化,× 400);B图为各组小鼠肾组织HE染色结果(× 400);C图为各组小鼠肾小管损伤评分;与假手术组比较,aP < 0.05,与野生型移植组比较,bP < 0.05。

    Figure  5.  Renal tubular injury and renal tubule injury score of mice in each group

    图  6  各组肾组织炎症细胞浸润及炎症因子表达情况

    注:A图为MPO免疫组化染色结果(× 400);B图为F4/80免疫组化染色结果(× 400);C图为各组炎症因子水平;与假手术组比较,aP < 0.05;与野生型移植组比较,bP < 0.05。

    Figure  6.  Inflammatory cell infiltration and expression of inflammatory factors in renal tissues of each group

    图  7  各组肾组织TLR4、NF-κB表达情况(免疫荧光,× 400)

    Figure  7.  Expression of TLR4 and NF-κB in renal tissues of each group

  • [1] HART A, LENTINE KL, SMITH JM, et al. OPTN/SRTR 2019 annual data report: kidney[J]. Am J Transplant, 2021, 21(Suppl 2): 21-137. DOI: 10.1111/ajt.16502.
    [2] MUDIAYI D, SHOJAI S, OKPECHI I, et al. Global estimates of capacity for kidney transplantation in world countries and regions[J]. Transplantation, 2022, 106(6): 1113-1122. DOI: 10.1097/TP.0000000000003943.
    [3] 李峰, 浦金贤, 黄玉华, 等. 肾损伤标志物对肾移植受者发生DGF的早期预测价值[J]. 器官移植, 2022, 13(1): 74-79. DOI: 10.3969/j.issn.1674-7445.2022.01.012.

    LI F, PU JX, HUANG YH, et al. Predictive value of kidney injury markers for early DGF in kidney transplant recipients[J]. Organ Transplant, 2022, 13(1): 74-79. DOI: 10.3969/j.issn.1674-7445.2022.01.012.
    [4] TULLIUS SG, RABB H. Improving the supply and quality of deceased-donor organs for transplantation[J]. N Engl J Med, 2018, 379(7): 693-694. DOI: 10.1056/NEJMc1808003.
    [5] SCHRÖPPEL B, LEGENDRE C. Delayed kidney graft function: from mechanism to translation[J]. Kidney Int, 2014, 86(2): 251-258. DOI: 10.1038/ki.2014.18.
    [6] WANG D, DAY EA, TOWNSEND LK, et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease[J]. Nat Rev Endocrinol, 2021, 17(10): 592-607. DOI: 10.1038/s41574-021-00529-7.
    [7] UNSICKER K, SPITTAU B, KRIEGLSTEIN K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1[J]. Cytokine Growth Factor Rev, 2013, 24(4): 373-384. DOI: 10.1016/j.cytogfr.2013.05.003.
    [8] CHEN W, TEN DIJKE P. Immunoregulation by members of the TGFβ superfamily[J]. Nat Rev Immunol, 2016, 16(12): 723-740. DOI: 10.1038/nri.2016.112.
    [9] MULDERRIG L, GARAYCOECHEA JI, TUONG ZK, et al. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response[J]. Nature, 2021, 600(7887): 158-163. DOI: 10.1038/s41586-021-04133-7.
    [10] NAKAYASU ES, SYED F, TERSEY SA, et al. Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention[J]. Cell Metab, 2020, 31(2): 363-374. DOI: 10.1016/j.cmet.2019.12.005.
    [11] COLL AP, CHEN M, TASKAR P, et al. GDF15 mediates the effects of metformin on body weight and energy balance[J]. Nature, 2020, 578(7795): 444-448. DOI: 10.1038/s41586-019-1911-y.
    [12] BORNER T, SHAULSON ED, GHIDEWON MY, et al. GDF15 induces anorexia through nausea and emesis[J]. Cell Metab, 2020, 31(2): 351-362. DOI: 10.1016/j.cmet.2019.12.004.
    [13] SUN L, ZHOU X, JIANG J, et al. Growth differentiation factor-15 levels and the risk of contrast induced nephropathy in patients with acute myocardial infarction undergoing percutaneous coronary intervention: a retrospective observation study[J]. PLoS One, 2018, 13(5): e0197609. DOI: 10.1371/journal.pone.0197609.
    [14] KAHLI A, GUENANCIA C, ZELLER M, et al. Growth differentiation factor-15 (GDF-15) levels are associated with cardiac and renal injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass[J]. PLoS One, 2014, 9(8): e105759. DOI: 10.1371/journal.pone.0105759.
    [15] GUENANCIA C, KAHLI A, LAURENT G, et al. Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery[J]. Int J Cardiol, 2015, 197: 66-71. DOI: 10.1016/j.ijcard.2015.06.012.
    [16] SUN L, ZHOU X, JIANG J, et al. Growth differentiation factor-15 levels and the risk of contrast induced acute kidney injury in acute myocardial infarction patients treated invasively: a propensity-score match analysis[J]. PLoS One, 2018, 13(3): e0194152. DOI: 10.1371/journal.pone.0194152.
    [17] DE COS GOMEZ M, GARCIA UNZUETA MT, BENITO HERNANDEZ A, et al. Growth differentiation factor 15 is superior to troponin I in the evaluation of kidney transplant candidates[J]. Am J Nephrol, 2022, 53(2/3): 118-128. DOI: 10.1159/000521781.
    [18] LUAN HH, WANG A, HILLIARD BK, et al. GDF15 is an inflammation-induced central mediator of tissue tolerance[J]. Cell, 2019, 178(5): 1231-1244. DOI: 10.1016/j.cell.2019.07.033.
    [19] PATSALOS A, HALASZ L, MEDINA-SERPAS MA, et al. A growth factor-expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15[J]. J Exp Med, 2022, 219(1): e20210420. DOI: 10.1084/jem.20210420.
    [20] ZHU J, ZHANG G, SONG Z, et al. Protein kinase C-δ mediates kidney tubular injury in cold storage-associated kidney transplantation[J]. J Am Soc Nephrol, 2020, 31(5): 1050-1065. DOI: 10.1681/ASN.2019101060.
    [21] HART A, SMITH JM, SKEANS MA, et al. OPTN/SRTR 2017 annual data report: kidney[J]. Am J Transplant, 2019, 19(Suppl 2): 19-123. DOI: 10.1111/ajt.15274.
    [22] TUEGEL C, KATZ R, ALAM M, et al. GDF-15, galectin 3, soluble ST2, and risk of mortality and cardiovascular events in CKD[J]. Am J Kidney Dis, 2018, 72(4): 519-528. DOI: 10.1053/j.ajkd.2018.03.025.
    [23] WU H, CHEN G, WYBURN KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury[J]. J Clin Invest, 2007, 117(10): 2847-2859. DOI: 10.1172/JCI31008.
    [24] VALIÑO-RIVAS L, CUARENTAL L, CEBALLOS MI, et al. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis[J]. Kidney Int, 2022, 101(6): 1200-1215. DOI: 10.1016/j.kint.2022.02.028.
    [25] PEREZ-GOMEZ MV, PIZARRO-SANCHEZ S, GRACIA-IGUACEL C, et al. Urinary growth differentiation factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease[J]. J Nephrol, 2021, 34(6): 1819-1832. DOI: 10.1007/s40620-021-01020-2.
    [26] LAUCYTE-CIBULSKIENE A, WARD LJ, EBERT T, et al. Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: focus on sex-specific associations with vascular outcomes and all-cause mortality[J]. Biol Sex Differ, 2021, 12(1): 50. DOI: 10.1186/s13293-021-00393-0.
    [27] CIESIELSKA A, MATYJEK M, KWIATKOWSKA K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4): 1233-1261. DOI: 10.1007/s00018-020-03656-y.
    [28] JAIN S, PLENTER R, NYDAM T, et al. Deletion of TLR4 reduces apoptosis and improves histology in a murine kidney transplant model[J]. Sci Rep, 2021, 11(1): 16182. DOI: 10.1038/s41598-021-95504-7.
    [29] CONTE M, GIULIANI C, CHIARIELLO A, et al. GDF15, an emerging key player in human aging[J]. Ageing Res Rev, 2022, 75: 101569. DOI: 10.1016/j.arr.2022.101569.
    [30] KEIPERT S, OST M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance[J]. Trends Endocrinol Metab, 2021, 32(11): 904-915. DOI: 10.1016/j.tem.2021.08.008.
  • 加载中
图(8)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  201
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-11-15

目录

    /

    返回文章
    返回