留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝脏组织工程研究进展

杨扬 王励

杨扬, 王励. 肝脏组织工程研究进展[J]. 器官移植, 2017, 8(5): 337-343. doi: 10.3969/j.issn.1674-7445.2017.05.001
引用本文: 杨扬, 王励. 肝脏组织工程研究进展[J]. 器官移植, 2017, 8(5): 337-343. doi: 10.3969/j.issn.1674-7445.2017.05.001

肝脏组织工程研究进展

doi: 10.3969/j.issn.1674-7445.2017.05.001
基金项目: 

国家自然科学基金 81370575

国家自然科学基金 81570593

广东省自然科学基金研究团队项目 2015A030312013

广州市科技计划项目-健康医疗协同创新重大专项 158100076

广州市科技计划项目-健康医疗协同创新重大专项 201400000001-3

中山大学临床医学研究5010项目 2014006

详细信息
    作者简介:

    杨扬,教授、主任医师,博士研究生导师。现任中山大学附属第三医院肝脏外科主任,器官移植中心副主任。兼任中国医师协会器官移植医师分会常委、中华医学会器官移植学分会青年委员会副主任委员、中华医学会外科学分会青年委员会副主任委员、中华医学会外科学分会移植学组委员、广东省医学会外科学分会首届青年委员会主任委员、广东省医学会医事法学分会副主任委员。兼任《器官移植》杂志常务编委,《Liver Research》杂志编辑部主任,《中华肝脏外科手术学电子杂志》副总编辑及编辑部主任,《中华医学杂志》、《中华肝胆外科杂志》等杂志编委。2001年8月获得外科学(器官移植学)博士学位。2005年在美国Mount Sinai医学院移植中心进修。擅长肝脏、胆道、门静脉高压与胰腺外科疾病的诊断与处理,主持或参与1 300余例临床肝移植。对肝脏外科、肝移植、移植免疫、干细胞在肝脏疾病的应用等方面有深入的研究,在肝移植术后并发症的预防和治疗方面有较为丰富的经验。在国内外期刊上发表论文数十篇,副主编专著2部。作为课题负责人获国家自然科学基金5项,863项目分课题1项,十二五国家科技重大专项分题1项,广东省自然科学基金面上项目、重点项目及重点攻关课题7项,广州市科技重点专项2项。获教育部科技进步一等奖2项、国家科技部科技进步二等奖1项、广东省科技进步一等奖3项、广州市科技进步一等奖1项。

    通讯作者:

    杨扬,Email: yysysu@163.com

  • 中图分类号: R617, R318.1

  • 摘要: 随着科学技术的迅速发展,通过干细胞与组织工程的新技术来再造人类肝脏,为解决供肝短缺提供了新的思路,是未来科学研究的重点。本文从去细胞化基质支架构建肝脏类器官、生物材料微型模具构建肝脏类器官、细胞诱导的无支架培养构建肝脏类器官、构建嵌合体制备人工肝脏等方面介绍肝脏组织工程研究的最新进展。

     

  • 图  1  基于肝脏基质支架的培养方法[4]

    Figure  1.  Culture method based on liver matrix scaffold

    图  2  基于微型模具制作新型肝脏“组织种子”[20]

    Figure  2.  Fabrication of new liver tissue seed based on micro mold

    图  3  人猪嵌合胚胎的培育[43]

    Figure  3.  Cultivation of human and porcine chimeric embryos

  • [1] Kim WR, Lake JR, Smith JM, et al. OPTN/SRTR 2015 annual data report: liver[J]. Am J Transplant, 2017, 17 (Suppl 1): 174-251. DOI: 10.1111/ajt.14126.
    [2] Wang Y, Nicolas CT, Chen HS, et al. Recent advances in decellularization and recellularization for tissue-engineered liver grafts[J]. Cells Tissues Organs, 2017, 203(4): 203-214. DOI: 10.1159/000452761.
    [3] Caralt M. Present and future of regenerative medicine: liver transplantation[J]. Transplant Proc, 2015, 47(8): 2377-2379. DOI: 10.1016/j.transproceed.2015.08.029.
    [4] Mazza G, Rombouts K, Rennie Hall A, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation[J]. Sci Rep, 2015, 5: 13079. DOI: 10.1038/srep13079.
    [5] Baptista PM, Siddiqui MM, Lozier G, et al. The use of whole organ decellularization for the generation of a vascularized liver organoid[J]. Hepatology, 2011, 53(2): 604-617. DOI: 10.1002/hep.24067.
    [6] Hassanein W, Uluer MC, Langford J, et al. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold[J]. Organogenesis, 2017, 13(1): 16-27. DOI: 10.1080/15476278.2016.1276146.
    [7] Ko IK, Peng L, Peloso A, et al. Bioengineered transplantable porcine livers with re-endothelialized vasculature[J]. Biomaterials, 2015, 40: 72-79. DOI: 10.1016/j.biomaterials.2014.11.027.
    [8] Soto-Gutierrez A, Zhang L, Medberry C, et al. A whole-organ regenerative medicine approach for liver replacement[J]. Tissue Eng Part C Methods, 2011, 17(6): 677-686. DOI: 10.1089/ten.tec.2010.0698.
    [9] Uygun BE, Soto-Gutierrez A, Yagi H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix[J]. Nat Med, 2010, 16(7): 814-820. DOI: 10.1038/nm.2170.
    [10] Yagi H, Fukumitsu K, Fukuda K, et al. Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach[J]. Cell Transplant, 2013, 22(2): 231-242. DOI: 10.3727/096368912X654939.
    [11] Lin P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering[J]. Tissue Eng, 2004, 10(7/8): 1046-1053. DOI: 10.1089/ten.2004.10.1046
    [12] Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243. DOI: 10.1016/j.biomaterials.2011.01.057.
    [13] Conklin BS, Wu H, Lin PH, et al. Basic fibroblast growth factor coating and endothelial cell seeding of a decellularized heparin-coated vascular graft[J]. Artif Organs, 2004, 28(7): 668-675. DOI: 10.1111/j.1525-1594.2004.00062.x.
    [14] Nakamura S, Ijima H. Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture[J]. J Biosci Bioeng, 2013, 116(6): 746-753. DOI: 10.1016/j.jbiosc.2013.05.031.
    [15] Uygun BE, Yarmush ML, Uygun K. Application of whole-organ tissue engineering in hepatology[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(12): 738-744. DOI: 10.1038/nrgastro.2012.140.
    [16] Verhulsel M, Vignes M, Descroix S, et al. A review of microfabrication and hydrogel engineering for micro-organs on chips[J]. Biomaterials, 2014, 35(6): 1816-1832. DOI: 10.1016/j.biomaterials.2013.11.021.
    [17] Yamada M, Utoh R, Ohashi K, et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions[J]. Biomaterials, 2012, 33(33):8304-8315. DOI: 10.1016/j.biomaterials.2012.07.068.
    [18] Rennert K, Steinborn S, Gröger M, et al. A microfluidically perfused three dimensional human liver model[J]. Biomaterials, 2015, 71:119-131. DOI: 10.1016/j.biomaterials.2015.08.043.
    [19] Chen AA, Thomas DK, Ong LL, et al. Humanized mice with ectopic artificial liver tissues[J]. Proc Natl Acad Sci USA, 2011, 108(29): 11842-11847. DOI: 10.1073/pnas.1101791108.
    [20] Stevens KR, Scull MA, Ramanan V, et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease[J]. Sci Transl Med, 2017, 9(399): eaah5505. DOI: 10.1126/scitranslmed.aah5505.
    [21] Coghlan A. 3D printer makes tiniest human liver ever[EB/OL]. (2013-04-23). https://www.newscientist.com/article/dn23419-3d-printer-makes-tiniest-human-liver-ever.html.
    [22] Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. DOI: 10.1016/j.stem.2013.04.009.
    [23] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. DOI: 10.1016/j.cell.2007.11.019.
    [24] Matsumoto K, Yoshitomi H, Rossant J, et al. Liver organogenesis promoted by endothelial cells prior to vascular function[J]. Science, 2001, 294(5542): 559-563. DOI: 10.1126/science.1063889.
    [25] Korzh S, Pan X, Garcia-Lecea M, et al. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish[J]. BMC Dev Biol, 2008, 8:84. DOI: 10.1186/1471-213X-8-84.
    [26] Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. DOI: 10.1038/nature12271.
    [27] Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation[J]. Cell Stem Cell, 2015, 16(5): 556-565. DOI: 10.1016/j.stem.2015.03.004.
    [28] Guye P, Ebrahimkhani MR, Kipniss N, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using GATA6[J]. Nat Commun, 2016, 7:10243. DOI: 10.1038/ncomms10243.
    [29] Ozair MZ, Noggle S, Warmflash A, et al. SMAD7 directly converts human embryonic stem cells to telencephalic fate by a default mechanism[J]. Stem Cells, 2013, 31(1): 35-47. DOI: 10.1002/stem.1246.
    [30] Peterkin T, Gibson A, Patient R. GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation[J]. EMBO J, 2003, 22(16): 4260-4273. DOI: 10.1093/emboj/cdg400.
    [31] Rhim JA, Sandgren EP, Palmiter RD, et al. Complete reconstitution of mouse liver with xenogeneic hepatocytes[J]. Proc Natl Acad Sci USA, 1995, 92(11): 4942-4946. doi: 10.1073/pnas.92.11.4942
    [32] Dandri M, Burda MR, Török E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus[J]. Hepatology, 2001, 33(4): 981-988. DOI: 10.1053/jhep.2001.23314.
    [33] Tateno C, Yoshizane Y, Saito N, et al. Near completely humanized liver in mice shows human-type metabolic responses to drugs[J]. Am J Pathol, 2004, 165(3): 901-912. DOI: 10.1016/S0002-9440(10)63352-4.
    [34] Meuleman P, Libbrecht L, De Vos R, et al. Morphological and biochemical characterization of a human liver in a uPA-SCID mouse chimera[J]. Hepatology, 2005, 41(4): 847-856. DOI: 10.1002/hep.20657.
    [35] Azuma H, Paulk N, Ranade A, et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice[J]. Nat Biotechnol, 2007, 25(8): 903-910. DOI: 10.1038/nbt1326.
    [36] Bissig KD, Le TT, Woods NB, et al. Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model[J]. Proc Natl Acad Sci USA, 2007, 104(51): 20507-20511. DOI: 10.1073/pnas.0710528105.
    [37] Rashid T, Kobayashi T, Nakauchi H. Revisiting the flight of icarus: making human organs from PSCs with large animal chimeras[J]. Cell Stem Cell, 2014, 15(4): 406-409. DOI: 10.1016/j.stem.2014.09.013.
    [38] Kim H, Kim JS. A guide to genome engineering with programmable nucleases[J]. Nat Rev Genet, 2014, 15(5): 321-334. DOI: 10.1038/nrg3686.
    [39] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. DOI: 10.1016/j.cell.2014.05.010.
    [40] Yang L, Güell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. DOI: 10.1126/science.aad1191.
    [41] Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2): 288-299. DOI: 10.1002/path.4635.
    [42] Shaw D, Dondorp W, Geijsen N, et al. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs?[J]. J Med Ethics, 2015, 41(12): 970-974. DOI: 10.1136/medethics-2014-102224.
    [43] Wu J, Platero-Luengo A, Sakurai M, et al. Interspecies chimerism with mammalian pluripotent stem cells[J]. Cell, 2017, 168(3): 473-486. DOI: 10.1016/j.cell.2016.12.036.
    [44] Xiang AP, Mao FF, Li WQ, et al. Extensive contribution of embryonic stem cells to the development of an evolutionarily divergent host[J]. Hum Mol Genet, 2008, 17(1): 27-37. DOI: 10.1093/hmg/ddm282.
    [45] Li W, Huang L, Lin W, et al. Engraftable neural crest stem cells derived from cynomolgus monkey embryonic stem cells[J]. Biomaterials, 2015, 39: 75-84. DOI: 10.1016/j.biomaterials.2014.10.056.
  • 加载中
图(3)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  60
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-01
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回