Turn off MathJax
Article Contents
Hu Yao, Liu Ling. Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024029
Citation: Hu Yao, Liu Ling. Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024029

Hypomagnesemia and kidney transplantation: research progress in immune effect and infection risk

doi: 10.3969/j.issn.1674-7445.2024029
More Information
  • Corresponding author: Liu Ling, Email: 2335374751@qq.com
  • Received Date: 2024-01-18
    Available Online: 2024-04-29
  • As a cation with abundant intracellular contents and extensive functions, magnesium plays an active role in immune function and captivates widespread attention. Under the influence of multiple factors, such as use of calcineurin inhibitors, hypomagnesemia post-kidney transplantation is not uncommon. Infection is a common complication post-kidney transplantation and one of the main causes of death of kidney transplant recipients. Recent clinical studies have shown that hypomagnesemia post-kidney transplantation is closely associated with the risk of infection post-transplantation. Emphasizing and monitoring magnesium concentration in kidney transplant recipients may help prevent infection and improve clinical prognosis of both recipients and grafts. Therefore, research progress in magnesium and immune response, the causes of hypomagnesemia post-kidney transplantation and hypomagnesemia and infection post-kidney transplantation was reviewed, aiming to provide reference for the prevention and treatment of infection post-kidney transplantation.

     

  • loading
  • [1]
    冼盈, 段智勤, 李衡, 等. 肾移植术后感染病原菌特点及死亡风险[J]. 中国感染控制杂志, 2023, 22(5): 539-546. DOI: 10.12138/j.issn.1671-9638.20233265.

    XIAN Y, DUAN ZQ, LI H, et al. Characteristics of infection pathogens and risk of death after kidney trans-plantation[J]. Chin J Infect Control, 2023, 22(5): 539-546. DOI: 10.12138/j.issn.1671-9638.20233265.
    [2]
    VAN LAECKE S, VERMEIREN P, NAGLER EV, et al. Magnesium and infection risk after kidney transplantation: an observational cohort study[J]. J Infect, 2016, 73(1): 8-17. DOI: 10.1016/j.jinf.2016.04.007.
    [3]
    BARBAGALLO M, VERONESE N, DOMINGUEZ LJ. Magnesium in aging, health and diseases[J]. Nutrients, 2021, 13(2): 463. DOI: 10.3390/nu13020463.
    [4]
    BOSMAN W, HOENDEROP JGJ, DE BAAIJ JHF. Genetic and drug-induced hypomagnesemia: different cause, same mechanism[J]. Proc Nutr Soc, 2021, 80(3): 327-338. DOI: 10.1017/S0029665121000926.
    [5]
    ASHIQUE S, KUMAR S, HUSSAIN A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer[J]. J Health Popul Nutr, 2023, 42(1): 74. DOI: 10.1186/s41043-023-00423-0.
    [6]
    FREEMAN CM, WRIGHT BL, BAUER CS, et al. Cutaneous T-cell lymphoma as a unique presenting malignancy in X-linked magnesium defect with EBV infection and neoplasia (XMEN) disease[J]. Clin Immunol, 2021, 226: 108722. DOI: 10.1016/j.clim.2021.108722.
    [7]
    DE GROOT PF, KWAKERNAAK AJ, VAN LEEUWEN EMM, et al. Case report: XMEN disease: a patient with recurrent Hodgkin lymphoma and immune thrombocytopenia[J]. Front Med (Lausanne), 2023, 10: 1264329. DOI: 10.3389/fmed.2023.1264329.
    [8]
    CHAIGNE-DELALANDE B, LI FY, O'CONNOR GM, et alJ. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D[J]. Science, 2013, 341(6142): 186-191. DOI: 10.1126/science.1240094.
    [9]
    BRAULT J, MEIS RJ, LI L, et al. MAGT1 messenger RNA-corrected autologous T and natural killer cells for potential cell therapy in X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection and neoplasia disease[J]. Cytotherapy, 2021, 23(3): 203-210. DOI: 10.1016/j.jcyt.2020.08.013.
    [10]
    LÖTSCHER J, MARTÍ I LÍNDEZ AA, KIRCHHAMMER N, et al. Magnesium sensing via LFA-1 regulates CD8+ Tcell effector function[J]. Cell, 2022, 185(4): 585-602. DOI: 10.1016/j.cell.2021.12.039.
    [11]
    KAPNICK SM, STINCHCOMBE JC, GRIFFITHS GM, et al. Inducible T Cell kinase regulates the acquisition of cytolytic capacity and degranulation in CD8+ CTLs[J]. J Immunol, 2017, 198(7): 2699-2711. DOI: 10.4049/jimmunol.1601202.
    [12]
    KANELLOPOULOU C, GEORGE AB, MASUTANI E, et al. Mg2+ regulation of kinase signaling and immune function[J]. J Exp Med, 2019, 216(8): 1828-1842. DOI: 10.1084/jem.20181970.
    [13]
    HOWE MK, DOWDELL K, ROY A, et al. Magnesium restores activity to peripheral blood cells in a patient with functionally impaired interleukin-2-inducible T cell kinase[J]. Front Immunol, 2019, 10: 2000. DOI: 10.3389/fimmu.2019.02000.
    [14]
    LIANG HY, CHEN Y, WEI X, et al. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases[J]. Immunology, 2022, 165(1): 3-21. DOI: 10.1111/imm.13420.
    [15]
    MAHTANI T, TREANOR B. Beyond the CRAC: Diversification of ion signaling in B cells[J]. Immunol Rev, 2019, 291(1): 104-122DOI: 10.1111/imr.12770.

    MAHTANI T, TREANOR B. Beyond the CRAC: Diversification of ion signaling in B cells[J]. Immunol Rev, 2019, 291(1): 104-122DOI: 10.1111/imr.12770.
    [16]
    GOTRU SK, GIL-PULIDO J, BEYERSDORF N, et al. Cutting edge: imbalanced cation homeostasis in magt1-deficient b cells dysregulates B cell development and signaling in mice[J]. J Immunol, 2018, 200(8): 2529-2534. DOI: 10.4049/jimmunol.1701467.
    [17]
    QIAO W, WONG KHM, SHEN J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun, 2021, 12(1): 2885. DOI: 10.1038/s41467-021-23005-2.
    [18]
    STEFANACHE A, LUNGU II, BUTNARIU IA, et al. Understanding how minerals contribute to optimal immune function[J]. J Immunol Res, 2023: 3355733. DOI: 10.1155/2023/3355733.
    [19]
    LA CARRUBBA A, VERONESE N, DI BELLA G, et al. Prognostic value of magnesium in COVID-19: findings from the COMEPA study[J]. Nutrients, 2023, 15(4): 830. DOI: 10.3390/nu15040830.
    [20]
    ODLER B, DEAK AT, PREGARTNER G, et al. Hypomagnesemia is a risk factor for infections after kidney transplantation: a retrospective cohort analysis[J]. Nutrients, 2021, 13(4): 1296. DOI: 10.3390/nu13041296.
    [21]
    REZAZADEH H, SHARIFI MR, SHARIFI M, et al. Magnesium sulfate improves insulin resistance in high fat diet induced diabetic parents and their offspring[J]. Eur J Pharmacol, 2021, 909: 174418. DOI: 10.1016/j.ejphar.2021.174418.
    [22]
    DE SOUSA MELO SR, DOS SANTOS LR, DA CUNHA SOARES T, et al. Participation of magnesium in the secretion and signaling pathways of insulin: an updated review[J]. Biol Trace Elem Res, 2022, 200(8): 3545-3553. DOI: 10.1007/s12011-021-02966-x.
    [23]
    杨玉亭, 左庆娟, 郭艺芳. 镁和代谢紊乱[J]. 中国心血管杂志, 2023, 28(2): 189-192. DOI: 10.3969/j.issn.1007-5410.2023.02.019.

    YANG YT, ZUO QJ, GUO YF. Magnesium and metabolic disorders[J]. Chin J Cardiovascular Med, 2023, 28(2): 189-192. DOI: 10.3969/j.issn.1007-5410.2023.02.019.
    [24]
    邢宝迪, 吕文山, 王颜刚, 等. 血清镁与胰岛素抵抗的关系及钠-葡萄糖协同转运蛋白2抑制剂的升镁作用[J]. 中华糖尿病杂志, 2020, 12(7): 543-546. DOI: 10.3760/cma.j.cn115791-20200118-00069.

    XING BD, LYU WS, WANG YG, et al. The relationship between serum magnesium and insulin resistance and the effect of sodium-glucose co-transporter 2 inhibitor on magnesium elevation[J]. Chin J Diabetes, 2020, 12(7): 543-546. DOI: 10.3760/cma.j.cn115791-20200118-00069.
    [25]
    GARNIER AS, DUVEAU A, PLANCHAIS M, et al. Serum Magnesium after Kidney Transplantation: A Systematic Review[J]. Nutrients, 2018, 10(6): 729.DOI: 10.3390/nu10060729.

    GARNIER AS, DUVEAU A, PLANCHAIS M, et al. Serum Magnesium after Kidney Transplantation: A Systematic Review[J]. Nutrients, 2018, 10(6): 729.DOI: 10.3390/nu10060729.
    [26]
    STEFANELLI LF, ALESSI M, BERTOLDI G, et al. Calcineurin-inhibitor-induced hypomagnesemia in kidney transplant patients: a monocentric comparative study between sucrosomial magnesium and magnesium pidolate supplementation[J]. J Clin Med, 2023, 12(3): 752. DOI: 10.3390/jcm12030752.
    [27]
    VIOLA P, MARCELLI V, SCULCO D, et al. Vestibular disorders after kidney transplantation: focus on the pathophysiological mechanisms underlying the vertical nystagmus associated with tacrolimus-related hypomagnesamia[J]. Int J Environ Res Public Health, 2022, 19(4): 2260. DOI: 10.3390/ijerph19042260.
    [28]
    PIETROPAOLO G, PUGLIESE D, ARMUZZI A, et al. Magnesium absorption in intestinal cells: evidence of cross-talk between EGF and TRPM6 and novel implications for cetuximab therapy[J]. Nutrients, 2020, 12(11): 3277. DOI: 10.3390/nu12113277.
    [29]
    MARNEROS AG. Magnesium and calcium homeostasis depend on KCTD1 function in the distal nephron[J]. Cell Rep, 2021, 34(2): 108616. DOI: 10.1016/j.celrep.2020.108616.
    [30]
    DA SILVA CA, DE BRAGANÇA AC, SHIMIZU MH, et al. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression[J]. Am J Physiol Renal Physiol, 2009, 297(4): F916-F922. DOI: 10.1152/ajprenal.90256.2008.
    [31]
    ANDOH TF, BURDMANN EA, FRANSECHINI N, et al. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506[J]. Kidney Int, 1996, 50(4): 1110-1117. DOI: 10.1038/ki.1996.417.
    [32]
    崔维恒. 长期使用质子泵抑制剂所致不良反应的研究进展[J]. 河南大学学报(医学版), 2023, 42(3): 163-166,176. DOI: 10.15991/j.cnki.41-1361/r.2023.03.008.

    CUI WH. Research progress of adverse reactions caused by long-term use of proton pump inhibitors[J]. J Henan Univ (Med Sci), 2023, 42(3): 163-166,176. DOI: 10.15991/j.cnki.41-1361/r.2023.03.008.
    [33]
    AYDIN YOLDEMIR Ş, ZEREN OZTURK G, AKARSU M, et al. Is there a correlation between hypomagnesemia linked to long-term proton pump inhibitor use and the active agent?[J]. Wien Klin Wochenschr, 2022, 134(3/4): 104-109. DOI: 10.1007/s00508-021-01834-x.
    [34]
    SEAH S, TAN YK, TEH K, et al. Proton-pump inhibitor use amongst patients with severe hypomagnesemia[J]. Front Pharmacol, 2023, 14: 1092476. DOI: 10.3389/fphar.2023.1092476.
    [35]
    GOMMERS LMM, HOENDEROP JGJ, DE BAAIJ JHF. Mechanisms of proton pump inhibitor-induced hypomagnesemia[J]. Acta Physiol (Oxf), 2022, 235(4): e13846. DOI: 10.1111/apha.13846.
    [36]
    DOUWES RM, GOMES-NETO AW, SCHUTTEN JC, et al. Proton-pump inhibitors and hypomagnesaemia in kidney transplant recipients[J]. J Clin Med, 2019, 8(12): 2162. DOI: 10.3390/jcm8122162.
    [37]
    郭飘飘, 崔越, 张汝建, 等. 质子泵抑制剂与低镁血症关系的Meta分析[J]. 山东第一医科大学(山东省医学科学院)学报, 2022, 43(9): 674-681. DOI: 10.3969/j.issn.2097-0005.2022.09.003.

    GUO PP, CUI Y, ZHANG RJ, et al. Proton pump inhibitors and hypomagnesemia: a meta-analysis[J]. J ShanDong First Med Univ(ShanDong Acad Med Sci), 2022, 43(9): 674-681. DOI: 10.3969/j.issn.2097-0005.2022.09.003.
    [38]
    LATEEF JUNAID MA, FARAZ A, VASEEM M, et al. Effect of proton pump inhibitors on magnesium levels in Type II diabetic patients: a single centre study from Saudi Arabia[J]. Eur Rev Med Pharmacol Sci, 2023, 27(3): 1077-1082. DOI: 10.26355/eurrev_202302_31204.
    [39]
    VAN LAECKE S, VAN BIESEN W. Hypomagnesaemia in kidney transplantation[J]. Transplant Rev (Orlando), 2015, 29(3): 154-160. DOI: 10.1016/j.trre.2015.05.002.
    [40]
    PANTHOFER AM, LYU B, ASTOR BC, et al. Post-kidney transplant serum magnesium exhibits a U-shaped association with subsequent mortality: an observational cohort study[J]. Transpl Int, 2021, 34(10): 1853-1861. DOI: 10.1111/tri.13932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return