Turn off MathJax
Article Contents
Ni Haiqiang, Gu Shiqi, Peng Xuan, et al. Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024018
Citation: Ni Haiqiang, Gu Shiqi, Peng Xuan, et al. Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024018

Down-regulating GSK3β alleviates hypoxia/reoxygenation-induced injury of senescent renal tubular epithelial cells by inhibiting the function of ITPR1-GRP75-VDAC1 complex

doi: 10.3969/j.issn.1674-7445.2024018
More Information
  • Corresponding author: Gong Nianqiao, Email: nqgong@tjh.tjmu.edu.cn
  • Received Date: 2023-12-28
    Available Online: 2024-03-25
  •   Objective  To evaluate the effect of glycogen synthase kinase 3β (GSK3β) on hypoxia/reoxygenation (H/R)-induced injury of senescent renal tubular epithelial cell (RTEC) in aged mice and its regulatory mechanism.   Methods  RTEC were divided into the Young group (young RTEC with normal growth), Old group (aged RTEC induced by Etoposide), Old+Ad-shNC+H/R group [aged RTEC induced by Etoposide and then transfected with adenovirus negative control (Ad-shNC) for H/R treatment], and Old+Ad-shGSK3β+H/R group (aged RTEC induced by Etoposide and then transfected with short-hairpin RNA-expressing adenovirus with targeted silencing GSK3β for H/R treatment), respectively. Apoptosis level and mitochondrial reactive oxygen species level were detected by flow cytometry. Calcium ion level was determined by immunofluorescence staining. The expression and phosphorylation levels of GSK3β, mitochondria-associated endoplasmic reticulum membrane (MAM)-related proteins of inositol 1,4,5-trisphosphate receptor1 (ITPR1), voltage dependent anion-selective channel (VDAC1) and glucose-regulated protein 75 (GRP75) were detected by Western blot. The interaction between GSK3β and MAM-related proteins was analyzed by immunoprecipitation.   Results  Compared with the Young group, the apoptosis, mitochondrial reactive oxygen species and mitochondrial calcium ion levels were higher in the Old group. Compared with the Old group, the apoptosis, mitochondrial reactive oxygen species and mitochondrial calcium ion levels were higher in the Old+Ad-shNC+H/R group. Compared with the Old+Ad-shNC+H/R group, the apoptosis, mitochondrial reactive oxygen species and mitochondrial calcium ion levels were lower in the Old+Ad-shGSK3β+H/R group, and the differences were statistically significant (all P<0.05). Compared with the Young group, the expression levels of ITPR1, GRP75 and GSK3β proteins were up-regulated, the phosphorylation levels of ITPR1 and GRP75 were increased, whereas the levels of total VDAC1 protein and phosphorylated protein were decreased in the Old group. Compared with the Old group, the expression level of GSK3β protein was unchanged, the total protein and phosphorylation levels of ITPR1 and GRP75 were increased, the expression level of total VDAC1 protein remained unchanged and the phosphorylation level was increased in the Old+Ad-shNC+H/R group. Compared with the Old+Ad-shNC+H/R group, the expression level of GSK3β protein was decreased, the expression levels of total ITPR1, GRP75 and VDAC1 proteins were unchanged, whereas the phosphorylation levels were decreased in the Old+Ad-shGSK3β+H/R group. Immunoprecipitation showed that GSK3β could interact with ITPR1, GRP75 and VDAC1 proteins.   Conclusions  The expression level of GSK3β is up-regulated in senescent RTEC. Down-regulating GSK3β expression may reduce the phosphorylation level of ITPR1-GRP75-VDAC1 complex, constrain the overload of mitochondrial calcium ion, protect mitochondrial function and mitigate cell damage during reperfusion.

     

  • loading
  • [1]
    YU S, LONG JJ, YU Y, et al. Survival benefit of accepting kidneys from older donation after cardiac death donors[J]. Am J Transplant, 2021, 21(3): 1138-1146. DOI: 10.1111/ajt.16198.
    [2]
    邬莉萍, 张曙伟. 老年活体供肾移植现状与研究进展[J]. 现代实用医学, 2022, 34(11): 1403-1405. DOI: 10.3969/j.issn.1671-0800.2022.11.002.

    WU LP, ZHANG SG. Current status and research progress of elderly living donor kidney transplantation[J]. Mod Pract Med, 2022, 34(11): 1403-1405. DOI: 10.3969/j.issn.1671-0800.2022.11.002.
    [3]
    潘佳善, 苏涌, 朱道方, 等. 公民逝世捐献与活体捐献肾移植的近期临床效果[J]. 实用医学杂志, 2022, 38(2): 184-189. DOI: 10.3969/j.issn.1006-5725.2022.02.011.

    PAN JS, SU Y, ZHU DF, et al. Clinical effects of deceased vs living donor on kidney transplantation[J]. J Pract Med, 2022, 38(2): 184-189. DOI: 10.3969/j.issn.1006-5725.2022.02.011.
    [4]
    SUMMERS DM, WATSON CJ, PETTIGREW GJ, et al. Kidney donation after circulatory death (DCD): state of the art[J]. Kidney Int, 2015, 88(2): 241-249. DOI: 10.1038/ki.2015.88.
    [5]
    PÉREZ-SÁEZ MJ, MONTERO N, REDONDO-PACHÓN D, et al. Strategies for an expanded use of kidneys from elderly donors[J]. Transplantation, 2017, 101(4): 727-745. DOI: 10.1097/TP.0000000000001635.
    [6]
    PRUETT TL, VECE GR, CARRICO RJ, et al. US deceased kidney transplantation: estimated GFR, donor age and KDPI association with graft survival[J]. EClinicalMedicine, 2021, 37: 100980. DOI: 10.1016/j.eclinm.2021.100980.
    [7]
    REX N, MELK A, SCHMITT R. Cellular senescence and kidney aging[J]. Clin Sci (Lond), 2023, 137(24): 1805-1821. DOI: 10.1042/CS20230140.
    [8]
    DONATE-CORREA J, MARTÍN-CARRO B, CANNATA-ANDÍA JB, et al. Klotho, oxidative stress, and mitochondrial damage in kidney disease[J]. Antioxidants (Basel), 2023, 12(2): 239. DOI: 10.3390/antiox12020239.
    [9]
    CHAUDHARY MR, CHAUDHARY S, SHARMA Y, et al. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies[J]. Biogerontology, 2023, 24(5): 609-662. DOI: 10.1007/s10522-023-10050-1.
    [10]
    DENG LC, ALINEJAD T, BELLUSCI S, et al. Fibroblast growth factors in the management of acute kidney injury following ischemia-reperfusion[J]. Front Pharmacol, 2020, 11: 426. DOI: 10.3389/fphar.2020.00426.
    [11]
    TANG C, DONG Z. Mitochondria in kidney injury: when the power plant fails[J]. J Am Soc Nephrol, 2016, 27(7): 1869-1872. DOI: 10.1681/ASN.2015111277.
    [12]
    FUJII S, USHIODA R, NAGATA K. Redox states in the endoplasmic reticulum directly regulate the activity of calcium channel, inositol 1, 4, 5-trisphosphate receptors[J]. Proc Natl Acad Sci U S A, 2023, 120(22): e2216857120. DOI: 10.1073/pnas.2216857120.
    [13]
    YUAN M, GONG M, HE J, et al. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J]. Redox Biol, 2022, 52: 102289. DOI: 10.1016/j.redox.2022.102289.
    [14]
    ZIEGLER DV, VINDRIEUX D, GOEHRIG D, et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging[J]. Nat Commun, 2021, 12(1): 720. DOI: 10.1038/s41467-021-20993-z.
    [15]
    MORCIANO G, GIORGI C, BONORA M, et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury[J]. J Mol Cell Cardiol, 2015, 78: 142-153. DOI: 10.1016/j.yjmcc.2014.08.015.
    [16]
    FANG Y, CHEN B, LIU Z, et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging[J]. J Clin Invest, 2022, 132(4): e141848. DOI: 10.1172/JCI141848.
    [17]
    KUANG BC, WANG ZH, HOU SH, et al. Methyl eugenol protects the kidney from oxidative damage in mice by blocking the Nrf2 nuclear export signal through activation of the AMPK/GSK3β axis[J]. Acta Pharmacol Sin, 2023, 44(2): 367-380. DOI: 10.1038/s41401-022-00942-2.
    [18]
    COELLO I, MARTÍNEZ AI, PERAIRE M, et al. Effect of ischemia times and donor and recipient features on Maastricht category III kidney transplant outcomes[J]. Arch Esp Urol, 2022, 75(7): 612-617. DOI: 10.56434/j.arch.esp.urol.20227507.88.
    [19]
    LIM WH, OOI E, PILMORE HL, et al. Interactions between donor age and 12-month estimated glomerular filtration rate on allograft and patient outcomes after kidney transplantation[J]. Transpl Int, 2022, 35: 10199. DOI: 10.3389/ti.2022.10199.
    [20]
    SCHMITT R, MELK A. Molecular mechanisms of renal aging[J]. Kidney Int, 2017, 92(3): 569-579. DOI: 10.1016/j.kint.2017.02.036.
    [21]
    MAROSI M, ARMAN P, ACETO G, et al. Glycogen synthase kinase 3: ion channels, plasticity, and diseases[J]. Int J Mol Sci, 2022, 23(8): 4413. DOI: 10.3390/ijms23084413.
    [22]
    许艳玲, 赵玉珠, 付裕, 等. 青蒿琥酯通过PI3K/GSK-3β通路对1型糖尿病小鼠胰岛素抵抗的改善作用研究[J]. 天津中医药, 2022, 39(8): 1077-1081. DOI: 10.11656/j.issn.1672-1519.2022.08.23.

    XU YL, ZHAO YZ, FU Y, et al. Effect of artesunate on insulin resistance in type 1 diabetic mouse through PI3K/GSK-3β pathway[J]. Tianjin J Tradit Chin Med, 2022, 39(8): 1077-1081. DOI: 10.11656/j.issn.1672-1519.2022.08.23.
    [23]
    KREIDBERG JA, SCHUMACHER VA. GSK3β and the aging kidney[J]. J Clin Invest, 2022, 132(4): e155885. DOI: 10.1172/JCI155885.
    [24]
    信强, 崔碧红, 苏秀兰, 等. 缺血再灌注对老年心脏的损伤机制及研究进展[J]. 内蒙古医科大学学报, 2023, 45(1): 101-105.

    XIN Q, CUI BH, SU XL, et al. Mechanism and research progress of ischemia-reperfusion injury in elderly heart[J]. J Inner Mongolia Med Univ, 2023, 45(1): 101-105.
    [25]
    CHEN Q, SONG Y, YANG N, et al. Aging deteriorated liver ischemia and reperfusion injury by suppressing Tribble's proteins 1 mediated macrophage polarization[J]. Bioengineered, 2022, 13(6): 14519-14533. DOI: 10.1080/21655979.2022.2090218.
    [26]
    KOSTYAK JC, HUNTER JC, KORZICK DH. Acute PKCdelta inhibition limits ischaemia-reperfusion injury in the aged rat heart: role of GSK-3beta[J]. Cardiovasc Res, 2006, 70(2): 325-334. DOI: 10.1016/j.cardiores.2006.02.009.
    [27]
    KORZICK DH, KOSTYAK JC, HUNTER JC, et al Local delivery of PKCepsilon-activating peptide mimics ischemic preconditioning in aged hearts through GSK-3beta but not F1-ATPase inactivation[J]. Am J Physiol Heart Circ Physiol, 2007, 293(4): H2056-H2063. DOI: 10.1152/ajpheart.00403.2007.
    [28]
    NELSON PJ, CANTLEY L. GSK3beta plays dirty in acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(2): 199-200. DOI: 10.1681/ASN.2009121214.
    [29]
    ZHOU S, WANG P, QIAO Y, et al. Genetic and pharmacologic targeting of glycogen synthase kinase 3β reinforces the Nrf2 antioxidant defense against podocytopathy[J]. J Am Soc Nephrol, 2016, 27(8): 2289-2308. DOI: 10.1681/ASN.2015050565.
    [30]
    SUN Y, FAN Y, WANG Z, et al. S100A16 promotes acute kidney injury by activating HRD1-induced ubiquitination and degradation of GSK3β and CK1α[J]. Cell Mol Life Sci, 2022, 79(3): 184. DOI: 10.1007/s00018-022-04213-5.
    [31]
    GUO J, ZHENG W, LIU Y, et al. Long non-coding RNA DLX6-AS1 is the key mediator of glomerular podocyte injury and albuminuria in diabetic nephropathy by targeting the miR-346/GSK-3β signaling pathway[J]. Cell Death Dis, 2023, 14(2): 172. DOI: 10.1038/s41419-023-05695-2.
    [32]
    CHEN B, WANG P, LIANG X, et al. Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease[J]. Cell Death Dis, 2021, 12(5): 432. DOI: 10.1038/s41419-021-03709-5.
    [33]
    ZENG L, NG JK, FUNG WW, et al. Intrarenal and urinary glycogen synthase kinase-3 beta levels in diabetic and nondiabetic chronic kidney disease[J]. Kidney Blood Press Res, 2023, 48(1): 241-248. DOI: 10.1159/000530210.
    [34]
    JANIKIEWICZ J, SZYMAŃSKI J, MALINSKA D, et al. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics[J]. Cell Death Dis, 2018, 9(3): 332. DOI: 10.1038/s41419-017-0105-5.
    [35]
    FUJIMOTO T, SHIRASAWA S. Identification of KRAP-expressing cells and the functional relevance of KRAP to the subcellular localization of IP3R in the stomach and kidney[J]. Int J Mol Med, 2012, 30(6): 1287-1293. DOI: 10.3892/ijmm.2012.1126.
    [36]
    LIU Y, MA X, FUJIOKA H, et al. DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-GRP75-VDAC1[J]. Proc Natl Acad Sci U S A, 2019, 116(50): 25322-25328. DOI: 10.1073/pnas.1906565116.
    [37]
    GOMEZ L, THIEBAUT PA, PAILLARD M, et al. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury[J]. Cell Death Differ, 2016, 23(2): 313-322. DOI: 10.1038/cdd.2015.101.
    [38]
    PASTORINO JG, HOEK JB, SHULGA N. Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity[J]. Cancer Res, 2005, 65(22): 10545-10554. DOI: 10.1158/0008-5472.CAN-05-1925.
    [39]
    DAS S, WONG R, RAJAPAKSE N, et al. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation[J]. Circ Res, 2008, 103(9): 983-991. DOI: 10.1161/CIRCRESAHA.108.178970.
    [40]
    THOUDAM T, CHANDA D, LEE JY, et al. Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease[J]. Nat Commun, 2023, 14(1): 1703. DOI: 10.1038/s41467-023-37214-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (22) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return