Turn off MathJax
Article Contents
Yan Hui, Wu Furong, Ji Peng, et al. Evaluation of the predictive ability of individualized drug administration adjuvant decision-making system JPKD for tacrolimus blood concentration in kidney transplant recipients[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024011
Citation: Yan Hui, Wu Furong, Ji Peng, et al. Evaluation of the predictive ability of individualized drug administration adjuvant decision-making system JPKD for tacrolimus blood concentration in kidney transplant recipients[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024011

Evaluation of the predictive ability of individualized drug administration adjuvant decision-making system JPKD for tacrolimus blood concentration in kidney transplant recipients

doi: 10.3969/j.issn.1674-7445.2024011
More Information
  • Corresponding author: Zhang Shengyu, Email: zhangshengyu@126.com
  • Received Date: 2024-02-20
    Available Online: 2024-04-28
  •   Objective  To evaluate the predictive ability and influencing factors of individualized drug administration adjuvant decision-making system Java PK® for Desktop (JPKD) for tacrolimus blood concentration in kidney transplant recipients.   Methods  The monitoring data of tacrolimus blood concentration from 149 recipients early after kidney transplantation were collected. The trough blood concentration of tacrolimus was predicted by JPKD. The absolute weighted deviation and relative prediction deviation between the actual and predicted concentration were calculated. The influencing factors of the absolute weighted deviation were analyzed by univariate and multivariate logistic regression analyses, and the predictive values of these influencing factors on the accuracy of software prediction were assessed by delineating the receiver operating characteristic (ROC) curve.   Results  266 samples of tacrolimus blood concentration data were collected from 149 patients. The measured blood concentration of tacrolimus was (6.5±3.0) ng/mL (1.1-16.6 ng/mL), and the predicted value calculated by JPKD was (5.6±2.5) ng/mL (1.4-14.4 ng/mL). The absolute weighted deviation of the calculated data was 28.38%, and the relative prediction deviation was −13.55%. Univariate analysis showed that gender, albumin, changes in hematocrit, cytochrome P450 (CYP)3A5*3 genotype and C3435T genotype were associated with the inaccurate prediction results. Multivariate logistic regression analysis found that CYP3A5*3 genotype of AA and the changes in hematocrit were the independent risk factors affecting the accuracy of tacrolimus blood concentration predicted by JPKD. ROC curve analysis showed that when the changes in hematocrit exceeded 2.25%, the risk of inaccurate software prediction was increased.   Conclusions  JPKD possesses certain accuracy in predicting the blood concentration of tacrolimus in kidney transplant recipients, which may improve the qualified rate of tacrolimus blood concentration. Nevertheless, CYP3A5*3 genotype and the changes of hematocrit may affect the accuracy of predictions.

     

  • loading
  • [1]
    中华医学会器官移植学分会. 器官移植免疫抑制剂临床应用技术规范(2019版)[J]. 器官移植, 2019, 10(3): 213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001.

    Organ Transplantation Society of Chinese Medical Association. Technical specifications for clinical application of immunosuppressants in organ transplantation (2019)[J]. Organ Transplant, 2019, 10(3): 213-226. DOI: 10.3969/j.issn.1674-7445.2019.03.001.
    [2]
    WANG XH, SHAO K, AN HM, et al. The pharmacokinetics of tacrolimus in peripheral blood mononuclear cells and limited sampling strategy for estimation of exposure in renal transplant recipients[J]. Eur J Clin Pharmacol, 2022, 78(8): 1261-1272. DOI: 10.1007/s00228-021-03215-9.
    [3]
    MORAIS MC, SOARES ME, COSTA G, et al. Impact of tacrolimus intra-patient variability in adverse outcomes after organ transplantation[J]. World J Transplant, 2023, 13(5): 254-263. DOI: 10.5500/wjt.v13.i5.254.
    [4]
    CHEN D, LU H, SUI W, et al. Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients[J]. Pharmacogenomics J, 2021, 21(3): 376-389. DOI: 10.1038/s41397-021-00216-w.
    [5]
    陈文倩, 张雷, 张弋, 等. 实体器官移植他克莫司个体化治疗专家共识[J]. 中国医院用药评价与分析, 2021, 21(12): 1409-1424. DOI: 10.14009/j.issn.1672-2124.2021.12.001.

    CHEN WQ, ZHANG L, ZHANG Y, et al. Expert consensus on individual treatment of tacrolimusin solid organ transplantation[J]. Eval Anal Drug-Use Hosp China, 2021, 21(12): 1409-1424. DOI: 10.14009/j.issn.1672-2124.2021.12.001.
    [6]
    WOLF U. A drug safety concept (I) to avoid polypharmacy risks in transplantation by individual pharmacotherapy management in therapeutic drug monitoring of immunosuppressants[J]. Pharmaceutics, 2023, 15(9): 2300. DOI: 10.3390/pharmaceutics15092300.
    [7]
    广东省药学会. 肾移植患者免疫抑制剂长期管理医药专家共识[J]. 今日药学, 2022, 32(11): 801-816. DOI: 10.12048/j.issn.1674-229X.2022.11.001.

    Guangdong Pharmaceutical Society. Expert consensus on long-term management of immunosuppressants in renal transplant recipients[J]. Pharm Today, 2022, 32(11): 801-816. DOI: 10.12048/j.issn.1674-229X.2022.11.001.
    [8]
    ETTE EI, WILLIAMS PJ. Population pharmacokinetics I: background, concepts, and models[J]. Ann Pharmacother, 2004, 38(10): 1702-1706. DOI: 10.1345/aph.1D374.
    [9]
    DUFFULL SB, WRIGHT DF. What do we learn from repeated population analyses?[J]. Br J Clin Pharmacol, 2015, 79(1): 40-47. DOI: 10.1111/bcp.12233.
    [10]
    GU JQ, GUO YP, JIAO Z, et al. How to handle delayed or missed doses: a population pharmacokinetic perspective[J]. Eur J Drug Metab Pharmacokinet, 2020, 45(2): 163-172. DOI: 10.1007/s13318-019-00598-0.
    [11]
    TENG F, ZHANG W, WANG W, et al. Population pharmacokinetics of tacrolimus in Chinese adult liver transplant patients[J]. Biopharm Drug Dispos, 2022, 43(2): 76-85. DOI: 10.1002/bdd.2311.
    [12]
    PASCHIER A, DESTERE A, MONCHAUD C, et al. Tacrolimus population pharmacokinetics in adult heart transplant patients[J]. Br J Clin Pharmacol, 2023, 89(12): 3584-3595. DOI: 10.1111/bcp.15857.
    [13]
    KAMP J, ZWART TC, MEZIYERH S, et al. Meltdose tacrolimus population pharmacokinetics and limited sampling strategy evaluation in elderly kidney transplant recipients[J]. Pharmaceutics, 2023, 16(1): 17. DOI: 10.3390/pharmaceutics16010017.
    [14]
    DU Y, SONG W, XIONG X, et al. Population pharmacokinetics and dosage optimisation of tacrolimus coadministration with Wuzhi capsule in adult liver transplant patients[J]. Xenobiotica, 2022, 52(3): 274-283. DOI: 10.1080/00498254.2022.2073851.
    [15]
    CAI X, SONG H, JIAO Z, et al. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients[J]. Eur J Pharm Sci, 2020, 152: 105448. DOI: 10.1016/j.ejps.2020.105448.
    [16]
    CHENG Y, CHEN J, LIN X, et al. Population pharmacokinetic analysis for model-based therapeutic drug monitoring of tacrolimus in Chinese Han heart transplant patients[J]. Eur J Drug Metab Pharmacokinet, 2023, 48(1): 89-100. DOI: 10.1007/s13318-022-00807-3.
    [17]
    JING Y, KONG Y, HOU X, et al. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients[J]. J Clin Pharm Ther, 2021, 46(4): 1117-1128. DOI: 10.1111/jcpt.13407.
    [18]
    BRUNET M, VAN GELDER T, ÅSBERG A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. DOI: 10.1097/FTD.0000000000 000640.
    [19]
    韩璐, 徐方敏, 张晓珊, 等. 个体化给药辅助决策系统Smart Dose、PharmVan与JPKD对万古霉素血药浓度预测能力的评价[J]. 中华危重病急救医学, 2021, 33(3): 263-268. DOI: 10.3760/cma.j.cn121430-20201016- 00674.

    HAN L, XU FM, ZHANG XS, et al. Predictive performance of Smart Dose, PharmVan and JPKD on Vancomycin plasma concentration[J]. Chin Crit Care Med, 2021, 33(3): 263-268. DOI: 10.3760/cma.j.cn121430-20201016-00674.
    [20]
    刘雪姣, 周青, 赵宇蕾, 等. 万古霉素个体化给药辅助决策系统在重症患者中的应用[J]. 中国医院药学杂志, 2020, 40(20): 2143-2146,2157. DOI: 10.13286/j.1001-5213.2020.20.10.

    LIU XJ, ZHOU Q, ZHAO YL, et al. Application of vancomycin individualized dosage auxiliary system in ICU patients[J]. Chin J Hosp Pharm, 2020, 40(20): 2143-2146,2157. DOI: 10.13286/j.1001-5213.2020.20.10.
    [21]
    何娟, 杨婉花. 基于群体药动学的万古霉素个体化给药模式的建立和临床应用[J]. 中国临床药学杂志, 2015, 24(1): 27-31.

    HE J, YANG WH. Establishment of the individualized drug delivery model of vancomycin for infected patients based on population pharmacokinetics and its clinical application[J]. Chin J Clin Pharm, 2015, 24(1): 27-31.
    [22]
    张海波, 吴雨璇, 孔令文, 等. 个体化给药辅助软件应用于万古霉素个体化给药的效果评价[J]. 中国药物滥用防治杂志, 2022, 28(9): 1225-1228. DOI: 10.15900/j.cnki.zylf1995.2022.09.012.

    ZHANG HB, WU YX, KONG LW, et al. Application of personalized drug administration assistant software in vancomycin personalized drug administration[J]. Chin J Drug Abuse Prev Treat, 2022, 28(9): 1225-1228. DOI: 10.15900/j.cnki.zylf1995.2022.09.012.
    [23]
    仇晓威. 群体药动学方法调整患者万古霉素使用效果的分析[J]. 医学信息, 2023, 36(22): 97-100. DOI: 10.3969/j.issn.1006-1959.2023.22.021.

    QIU XW. Analysis of the effect of population pharmacokinetic method on adjusting the use of vancomycin in patients[J]. Med Inform, 2023, 36(22): 97-100. DOI: 10.3969/j.issn.1006-1959.2023.22.021.
    [24]
    杨浩, 熊雄, 刘长江. 骨科术后患者万古霉素峰谷浓度的影响因素及群体药动学预测比较[J]. 中国医院药学杂志, 2023, 43(24): 2722-2728. DOI: 10.13286/j.1001-5213.2023.24.02.

    YANG H, XIONG X, LIU CJ. Factors influencing peak and trough vancomycin concentrations in postoperative orthopaedic patients and its comparative population pharmacokinetic prediction[J]. Chin Jo Hosp Pharm, 2023, 43(24): 2722-2728. DOI: 10.13286/j.1001-5213.2023.24.02.
    [25]
    ZHANG HX, SHENG CC, LIU LS, et al. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co-administered with tacrolimus[J]. Br J Clin Pharmacol, 2019, 85(4): 746-761. DOI: 10.1111/bcp.13850.
    [26]
    KIRUBAKARAN R, STOCKER SL, HENNIG S, et al. Population pharmacokinetic models of tacrolimus in adult transplant recipients: a systematic review[J]. Clin Pharmacokinet, 2020, 59(11): 1357-1392. DOI: 10.1007/s40262-020-00922-x.
    [27]
    ASBERG A, FALCK P, UNDSET LH, et al. Computer-assisted cyclosporine dosing performs better than traditional dosing in renal transplant recipients: results of a pilot study[J]. Ther Drug Monit, 2010, 32(2): 152-158. DOI: 10.1097/FTD.0b013e3181d3f822.
    [28]
    FAELENS R, LUYCKX N, KUYPERS D, et al. Predicting model-informed precision dosing: a test-case in tacrolimus dose adaptation for kidney transplant recipients[J]. CPT Pharmacometrics Syst Pharmacol, 2022, 11(3): 348-361. DOI: 10.1002/psp4.12758.
    [29]
    刘晓芹, 焦正, 高玉成, 等. 个体化给药辅助决策系统研究与应用进展[J]. 中国药学杂志, 2019, 54(1): 1-8. DOI: 10.11669/cpj.2019.01.001.

    LIU XQ, QIAO Z, GAO YC, et al. Progress in development and application of decision-making systems for individualized dosing[J]. Chin Pharm J, 2019, 54(1): 1-8. DOI: 10.11669/cpj.2019.01.001.
    [30]
    陆晓玲, 王雨萍, 邵琨, 等. CYP3A5、ABCB1基因多态性对中国肾移植患者服用他克莫司剂量和血药浓度的影响[J]. 药学与临床研究, 2023, 31(6): 481-485.

    LU XL, WANG YP, SHAO K, et al. Effects of CYP3A5 and ABCB1 gene polymorphisms on dosages and blood concentrations of tacrolimus in chinese kidney transplant patients[J]. Pharm Clin Res, 2023, 31(6): 481-485.
    [31]
    CHAUHAN PM, HEMANI RJ, SOLANKI ND, et al. A systematic review and meta-analysis recite the efficacy of Tacrolimus treatment in renal transplant patients in association with genetic variants of CYP3A5 gene[J]. Am J Clin Exp Urol, 2023, 11(4): 275-292.
    [32]
    LU H, JIANG H, YANG S, et al. Trans-eQTLs of the CYP3A4 and CYP3A5 associated with tacrolimus trough blood concentration in Chinese renal transplant patients[J]. Biomed Pharmacother, 2022, 145: 112407. DOI: 10.1016/j.biopha.2021.112407.
    [33]
    HANNACHI I, CHADLI Z, KERKENI E, et al. Influence of CYP3A polymorphisms on tacrolimus pharmacokinetics in kidney transplant recipients[J]. Pharmacogenomics J, 2021, 21(1): 69-77. DOI: 10.1038/s41397-020-00179-4.
    [34]
    YU M, LIU M, ZHANG W, et al. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation[J]. Curr Drug Metab, 2018, 19(6): 513-522. DOI: 10.2174/138920021966618012915 1948.
    [35]
    CAI XJ, LI RD, LI JH, et al. Prospective population pharmacokinetic study of tacrolimus in adult recipients early after liver transplantation: a comparison of Michaelis-Menten and theory-based pharmacokinetic models[J]. Front Pharmacol, 2022, 13: 1031969. DOI: 10.3389/fphar.2022.1031969.
    [36]
    FRANKEN LG, FRANCKE MI, ANDREWS LM, et al. A population pharmacokinetic model of whole-blood and intracellular tacrolimus in kidney transplant recipients[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(4): 523-535. DOI: 10.1007/s13318-022-00767-8.
    [37]
    KHAMLEK K, KOMENKUL V, SRIBOONRUANG T, et al. Population pharmacokinetic models of tacrolimus in paediatric solid organ transplant recipients: a systematic review[J]. Br J Clin Pharmacol, 2024, 90(2): 406-426. DOI: 10.1111/bcp.15909.
    [38]
    ZAHIR H, MCLACHLAN AJ, NELSON A, et al. Population pharmacokinetic estimation of tacrolimus apparent clearance in adult liver transplant recipients[J]. Ther Drug Monit, 2005, 27(4): 422-430. DOI: 10.1097/01.ftd.0000170029.36573.a0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return