Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Hu Leyi, Liu Zhenzhen, Liu Yizhi. In vivo transplantation of eye organoids and application of tissue engineering scaffolds[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 649-655. doi: 10.3969/j.issn.1674-7445.2023059
Citation: Hu Leyi, Liu Zhenzhen, Liu Yizhi. In vivo transplantation of eye organoids and application of tissue engineering scaffolds[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 649-655. doi: 10.3969/j.issn.1674-7445.2023059

In vivo transplantation of eye organoids and application of tissue engineering scaffolds

doi: 10.3969/j.issn.1674-7445.2023059
More Information
  • Corresponding author: Liu Zhenzhen, Email: liuzhenzhen@gzzoc.com
  • Received Date: 2023-05-01
  • Accepted Date: 2023-07-10
  • Available Online: 2023-07-20
  • Publish Date: 2023-09-15
  • Eye organoid refers to a structure that possesses resembling cell types and functions to intraocular tissues, which is induced by stem cells in vitro. Transplanting it into the body for eye repair and regeneration is one of the key research directions in regenerative medicine, which also provides a novel direction and strategy for the treatment of major blinding diseases. As a carrier of biological tissue or cell growth, tissue engineering scaffold could support in vivo transplantation of eye organoids and promote their maturation. Organic combination of eye organoids and tissue engineering is a critical approach to realize in vivo integration of eye organoids and reconstruct corresponding structures and functions. In this review, the latest research status of eye organoids and in vivo transplantation were summarized, and relevant studies of tissue engineering scaffold-assisted eye organoid transplantation were highlighted, aiming to provide ideas and reference for subsequent inter-disciplinary research of eye organoids and tissue engineering.

     

  • loading
  • [1]
    LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125. DOI: 10.1126/science.1247125.
    [2]
    李金燕. 培养皿中的眼睛: 眼组织类器官技术发展与应用[J]. 眼科学报, 2022, 37(2): 100-110. DOI: 10.3978/j.issn.1000-4432.2021.07.23.

    LI JY. An eye in a culture dish: ocular organoids and their application[J]. Eye Sci, 2022, 37(2): 100-110. DOI: 10.3978/j.issn.1000-4432.2021.07.23.
    [3]
    WANG Z, HE X, QIAO H, et al. Global trends of organoid and organ-on-a-chip in the past decade: a bibliometric and comparative study[J]. Tissue Eng Part A, 2020, 26(11/12): 656-671. DOI: 10.1089/ten.TEA.2019.0251.
    [4]
    MANAFI N, SHOKRI F, ACHBERGER K, et al. Organoids and organ chips in ophthalmology[J]. Ocul Surf, 2021, 19: 1-15. DOI: 10.1016/j.jtos.2020.11.004.
    [5]
    EIRAKU M, TAKATA N, ISHIBASHI H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature, 2011, 472(7341): 51-56. DOI: 10.1038/nature09941.
    [6]
    ZHONG X, GUTIERREZ C, XUE T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nat Commun, 2014, 5: 4047. DOI: 10.1038/ncomms5047.
    [7]
    LOWE A, HARRIS R, BHANSALI P, et al. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces mediate self-formation of a retinal organoid. stem cell reports[J]. 2016, 6(5): 743-756. DOI: 10.1016/j.stemcr.2016.03.011.
    [8]
    GEORGIOU M, YANG C, ATKINSON R, et al. Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient-induced pluripotent stem cell-derived retinal pigment epithelium cells[J]. Clin Transl Med, 2022, 12(3): e759. DOI: 10.1002/ctm2.759.
    [9]
    NORRIE JL, NITYANANDAM A, LAI K, et al. Retinoblastoma from human stem cell-derived retinal organoids[J]. Nat Commun, 2021, 12(1): 4535. DOI: 10.1038/s41467-021-24781-7.
    [10]
    LEUNG A, SACRISTAN-REVIRIEGO A, PERDIGÃO PRL, et al. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis[J]. Stem Cell Reports, 2022, 17(10): 2187-2202. DOI: 10.1016/j.stemcr.2022.08.005.
    [11]
    BHARTI K, DEN HOLLANDER AI, LAKKARAJU A, et al. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration[J]. Exp Eye Res, 2022, 222: 109170. DOI: 10.1016/j.exer.2022.109170.
    [12]
    AASEN DM, VERGARA MN. New drug discovery paradigms for retinal diseases: a focus on retinal organoids[J]. J Ocul Pharmacol Ther, 2020, 36(1): 18-24. DOI: 10.1089/jop.2018.0140.
    [13]
    GASPARINI SJ, TESSMER K, REH M, et al. Transplanted human cones incorporate into the retina and function in a murine cone degeneration model[J]. J Clin Invest, 2022, 132(12): e154619. DOI: 10.1172/JCI154619.
    [14]
    PELLEGRINI G, GOLISANO O, PATERNA P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface[J]. J Cell Biol, 1999, 145(4): 769-782. DOI: 10.1083/jcb.145.4.769.
    [15]
    HAYASHI R, ISHIKAWA Y, SASAMOTO Y, et al. Co-ordinated ocular development from human iPS cells and recovery of corneal function[J]. Nature, 2016, 531(7594): 376-380. DOI: 10.1038/nature17000.
    [16]
    FOSTER JW, WAHLIN K, ADAMS SM, et al. Cornea organoids from human induced pluripotent stem cells[J]. Sci Rep, 2017, 7: 41286. DOI: 10.1038/srep41286.
    [17]
    SUSAIMANICKAM PJ, MADDILETI S, PULIMAMIDI VK, et al. Generating minicorneal organoids from human induced pluripotent stem cells[J]. Development, 2017, 144(13): 2338-2351. DOI: 10.1242/dev.143040.
    [18]
    VAN MEENEN J, NÍ DHUBHGHAILL S, VAN DEN BOGERD B, et al. An overview of advanced in vitro corneal models: implications for pharmacological testing[J]. Tissue Eng Part B Rev, 2022, 28(3): 506-516. DOI: 10.1089/ten.TEB.2021.0031.
    [19]
    HEIDARI M, NOORIZADEH F, WU K, et al. Dry eye disease: emerging approaches to disease analysis and therapy[J]. J Clin Med, 2019, 8(9): 1439. DOI: 10.3390/jcm8091439.
    [20]
    谭源. 内源性干细胞在晶状体再生修复中的应用及展望[J]. 眼科学报, 2022, 37(5): 360-373. DOI: 10.3978/j.issn.1000-4432.2021.10.05.

    TAN Y. Application and prospect of endogenous stem cells in lens regeneration and repair[J]. Eye Sci, 2022, 37(5): 360-373. DOI: 10.3978/j.issn.1000-4432.2021.10.05.
    [21]
    YANG C, YANG Y, BRENNAN L, et al. Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions[J]. FASEB J, 2010, 24(9): 3274-3283. DOI: 10.1096/fj.10-157255.
    [22]
    MURPHY P, KABIR MH, SRIVASTAVA T, et al. Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro[J]. Development, 2018, 145(1): dev155838. DOI: 10.1242/dev.155838.
    [23]
    ALI M, KABIR F, THOMSON JJ, et al. Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies[J]. Sci Rep, 2019, 9(1): 18552. DOI: 10.1038/s41598-019-54258-z.
    [24]
    FU Q, QIN Z, JIN X, et al. Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells[J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 517-527. DOI: 10.1167/iovs.16-20504.
    [25]
    LYU D, ZHANG L, QIN Z, et al. Modeling congenital cataract in vitro using patient-specific induced pluripotent stem cells[J]. NPJ Regen Med, 2021, 6(1): 60. DOI: 10.1038/s41536-021-00171-x.
    [26]
    ZHANG L, QIN Z, LYU D, et al. Postponement of the opacification of lentoid bodies derived from human induced pluripotent stem cells after lanosterol treatment-the first use of the lens aging model in vitro in cataract drug screening[J]. Front Pharmacol, 2022, 13: 959978. DOI: 10.3389/fphar.2022.959978.
    [27]
    BANNIER-HÉLAOUËT M, POST Y, KORVING J, et al. Exploring the human lacrimal gland using organoids and single-cell sequencing[J]. Cell Stem Cell, 2021, 28(7): 1221-1232. DOI: 10.1016/j.stem.2021.02.024.
    [28]
    HAYASHI R, OKUBO T, KUDO Y, et al. Generation of 3D lacrimal gland organoids from human pluripotent stem cells[J]. Nature, 2022, 605(7908): 126-131. DOI: 10.1038/s41586-022-04613-4.
    [29]
    RODBOON T, YODMUANG S, CHAISUPARAT R, et al. Development of high-throughput lacrimal gland organoid platforms for drug discovery in dry eye disease[J]. SLAS Discov, 2022, 27(3): 151-158. DOI: 10.1016/j.slasd.2021.11.002.
    [30]
    YUI S, NAKAMURA T, SATO T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18(4): 618-623. DOI: 10.1038/nm.2695.
    [31]
    赵冰. 类器官在器官移植领域的应用前景[J]. 器官移植, 2022, 13(2): 169-175. DOI: 10.3969/j.issn.1674-7445.2022.02.004.

    ZHAO B. Application prospects of organoids in organ transplantation[J]. Organ Transplant, 2022, 13(2): 169-175. DOI: 10.3969/j.issn.1674-7445.2022.02.004.
    [32]
    EISENSTEIN M. Organoids open fresh paths to biomedical advances[J]. Nature, 2022, 612(7940): S34-S35. DOI: 10.1038/d41586-022-04214-1.
    [33]
    ASSAWACHANANONT J, MANDAI M, OKAMOTO S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice[J]. Stem Cell Reports, 2014, 2(5): 662-674. DOI: 10.1016/j.stemcr.2014.03.011.
    [34]
    LIN B, MCLELLAND BT, ARAMANT RB, et al. Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction[J]. Invest Ophthalmol Vis Sci, 2020, 61(11): 34. DOI: 10.1167/iovs.61.11.34.
    [35]
    TU HY, WATANABE T, SHIRAI H, et al. Medium- to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration[J]. EBioMedicine, 2019, 39: 562-574. DOI: 10.1016/j.ebiom.2018.11.028.
    [36]
    MANDAI M, FUJII M, HASHIGUCHI T, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice[J]. Stem Cell Reports, 2017, 8(1): 69-83. DOI: 10.1016/j.stemcr.2016.12.008.
    [37]
    LI X, ZHANG L, TANG F, et al. Retinal organoids: cultivation, differentiation, and transplantation[J]. Front Cell Neurosci, 2021, 15: 638439. DOI: 10.3389/fncel.2021.638439.
    [38]
    GASPARINI SJ, LLONCH S, BORSCH O, et al. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives[J]. Prog Retin Eye Res, 2019, 69: 1-37. DOI: 10.1016/j.preteyeres.2018.11.001.
    [39]
    郭晓令, 朱德良, 连瑞玲,等. 非集落样、分散的人诱导多能干细胞可分化为球型可移植的功能性视网膜色素上皮细胞 [J]. 中国病理生理杂志, 2021, 37(4): 593-610.

    GUO XL, ZHU DL, LIAN RL, et al. Spheroid transplantable and functional retinal pigment epithelium derived from non-colony dissociated human induced pluripotent stem cells[J]. Chin J Pathophysiol, 2021, 37(4): 593-610.
    [40]
    SHIRAI H, MANDAI M, MATSUSHITA K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration[J]. Proc Natl Acad Sci U S A, 2016, 113(1): E81-E90. DOI: 10.1073/pnas.1512590113.
    [41]
    ZERTI D, HILGEN G, DORGAU B, et al. Transplanted pluripotent stem cell-derived photoreceptor precursors elicit conventional and unusual light responses in mice with advanced retinal degeneration[J]. Stem Cells, 2021, 39(7): 882-896. DOI: 10.1002/stem.3365.
    [42]
    ZHANG KY, AGUZZI EA, JOHNSON TV. Retinal ganglion cell transplantation: approaches for overcoming challenges to functional integration[J]. Cells, 2021, 10(6): 1426. DOI: 10.3390/cells10061426.
    [43]
    PEREIRO X, MILTNER AM, LA TORRE A, et al. Effects of adult müller cells and their conditioned media on the survival of stem cell-derived retinal ganglion cells[J]. Cells, 2020, 9(8): 1759. DOI: 10.3390/cells9081759.
    [44]
    COWAN CS, RENNER M, DE GENNARO M, et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell, 2020, 182(6): 1623-1640. DOI: 10.1016/j.cell.2020.08.013.
    [45]
    FLIGOR CM, LANGER KB, SRIDHAR A, et al. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells[J]. Sci Rep, 2018, 8(1): 14520. DOI: 10.1038/s41598-018-32871-8.
    [46]
    TANAKA T, YOKOI T, TAMALU F, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells[J]. Sci Rep, 2015, 5: 8344. DOI: 10.1038/srep08344.
    [47]
    ZHANG Z, XU Z, YUAN F, et al. Retinal organoid technology: where are we now? [J]. Int J Mol Sci, 2021, 22(19): 10244. DOI: 10.3390/ijms221910244.
    [48]
    陈娜, 石栋, 赵江月. 构建组织工程人工角膜的天然生物材料的研究进展[J]. 国际眼科杂志, 2022, 22(1): 44-48.

    CHEN N, SHI D, ZHAO JY. Research progress of natural biomaterials for construction of tissue engineering cornea[J]. Int Eye Sci, 2022, 22(1): 44-48.
    [49]
    HUNT NC, HALLAM D, CHICHAGOVA V, et al. The application of biomaterials to tissue engineering neural retina and retinal pigment epithelium[J]. Adv Healthc Mater, 2018, 7(23): e1800226. DOI: 10.1002/adhm.201800226.
    [50]
    LI K, ZHONG X, YANG S, et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold[J]. Acta Biomater, 2017, 54: 117-127. DOI: 10.1016/j.actbio.2017.02.032.
    [51]
    XIAN B, LUO Z, LI K, et al. Dexamethasone provides effective immunosuppression for improved survival of retinal organoids after epiretinal transplantation[J]. Stem Cells Int, 2019: 7148032. DOI: 10.1155/2019/7148032.
    [52]
    JUNG YH, PHILLIPS MJ, LEE J, et al. 3D microstructured scaffolds to support photoreceptor polarization and maturation[J]. Adv Mater, 2018, 30(39): e1803550. DOI: 10.1002/adma.201803550.
    [53]
    LEE IK, LUDWIG AL, PHILLIPS MJ, et al. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction[J]. Sci Adv, 2021, 7(17): eabf0344. DOI: 10.1126/sciadv.abf0344.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (291) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return