Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Li Jiawei, Xu Hongyang. Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058
Citation: Li Jiawei, Xu Hongyang. Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 662-668. doi: 10.3969/j.issn.1674-7445.2023058

Role and prospect of ferroptosis in ischemia-reperfusion injury during organ transplantation

doi: 10.3969/j.issn.1674-7445.2023058
More Information
  • Corresponding author: Xu Hongyang, Email: xhy1912@aliyun.com
  • Received Date: 2023-04-21
    Available Online: 2023-07-20
  • Publish Date: 2023-09-15
  • Ferroptosis is a newly-emerged pattern of programmed cell death discovered in recent years, which is defined as iron-dependent programmed necrosis mediated by lipid peroxidation damage. As a conservative procedure, ferroptosis plays a vital role in the development and diseases of multiple organisms including plants and animals. Since ferroptosis was first reported in 2012, growing interests have been diverted to the process of ferroptosis and its role in disease treatment. Ischemia-reperfusion injury is a common pathological process during organ transplantation, and ferroptosis is considered as one of the main patterns inducing ischemia-reperfusion injury. Consequently, the definition, regulatory mechanism and the mechanisms of ferroptosis in ischemia-reperfusion injury after kidney, liver, heart and lung transplantations were reviewed, aiming to provide theoretical basis for the prevention and treatment of ischemia-reperfusion injury in organ transplantation.

     

  • loading
  • [1]
    TANG D, CHEN X, KANG R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. DOI: 10.1038/s41422-020-00441-1.
    [2]
    刘岩, 雷立芳. 铁死亡与神经退行性疾病[J]. 中华老年医学杂志, 2021, 40(4): 428-432. DOI: 10.3760/cma.j.issn.0254-9026.2021.04.005.

    LIU Y, LEI LF. The role of ferroptosis in neurodegenerative disease[J]. Chin J Geriatr, 2021, 40(4): 428-432. DOI: 10.3760/cma.j.issn.0254-9026.2021.04.005.
    [3]
    JIANG X, STOCKWELL BR, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. DOI: 10.1038/s41580-020-00324-8.
    [4]
    易欣, 刘畅, 周易, 等. 铁死亡与缺血再灌注损伤关系的研究进展[J]. 广西医学, 2021, 43(7): 858-862. DOI: 10.11675/j.issn.0253-4304.2021.07.16.

    YI X, LIU C, ZHOU Y, et al. Research progress on the relationship between ferroptosis and ischemia-reperfusion injury[J]. Guangxi Med J, 2021, 43(7): 858-862. DOI: 10.11675/j.issn.0253-4304.2021.07.16.
    [5]
    LI X, MA N, XU J, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021: 1587922. DOI: 10.1155/2021/1587922.
    [6]
    ZHAO L, ZHOU X, XIE F, et al. Ferroptosis in cancer and cancer immunotherapy[J]. Cancer Commun (Lond), 2022, 42(2): 88-116. DOI: 10.1002/cac2.12250.
    [7]
    CHEN X, KANG R, KROEMER G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. DOI: 10.1038/s41571-020-00462-0.
    [8]
    LIN HQ, DAI SH, LIU WC, et al. Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model[J]. Life Sci, 2021, 268: 118820. DOI: 10.1016/j.lfs.2020.118820.
    [9]
    LIU WC, CHEN SB, LIU S, et al. Inhibition of mitochondrial autophagy protects donor lungs for lung transplantation against ischaemia-reperfusion injury in rats via the mTOR pathway[J]. J Cell Mol Med, 2019, 23(5): 3190-3201. DOI: 10.1111/jcmm.14177.
    [10]
    刘思齐, 杨正飞. 铁死亡: 心肌缺血再灌注损伤分子机制和药物治疗研究新靶点[J]. 中山大学学报(医学科学版) , 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.

    LIU SQ, YANG ZF. Ferroptosis: novel research targets of molecular mechanism and drug therapy for myocardial ischemia-reperfusion injury[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(5): 712-719. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0504.
    [11]
    SHI S, WANG L, VAN DER LAAN LJW, et al. Mitochondrial dysfunction and oxidative stress in liver transplantation and underlying diseases: new insights and therapeutics[J]. Transplantation, 2021, 105(11): 2362-2373. DOI: 10.1097/TP.0000000000003691.
    [12]
    MASLOV LN, POPOV SV, NARYZHNAYA NV, et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury[J]. Apoptosis, 2022, 27(9/10): 697-719. DOI: 10.1007/s10495-022-01760-x.
    [13]
    王倩, 明婷倩, 吴晓静. 铁死亡的发生机制及其在急性肺损伤的研究进展[J]. 医学研究杂志, 2022, 51(6): 173-176. DOI: 10.11969/j.issn.1673-548X.2022.06.036.

    WANG Q, MING TQ, WU XJ. Progress of the traditional chinese medicine in the regulation of ferroptosis in cerebral ischemia-reperfusion injury[J]. Prog Physiol Sci, 2022, 51(6): 173-176. DOI: 10.11969/j.issn.1673-548X.2022.06.036.
    [14]
    BERTRAND RL. Iron accumulation, glutathione depletion, and lipid peroxidation must occur simultaneously during ferroptosis and are mutually amplifying events[J]. Med Hypotheses, 2017, 101: 69-74. DOI: 10.1016/j.mehy.2017.02.017.
    [15]
    LI J, CAO F, YIN HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
    [16]
    蒋楠, 杜立达, 孔德文, 等. 胱氨酸/谷氨酸反向转运体作为药物靶点的研究进展[J]. 药学学报, 2022, 57(6): 1621-1629. DOI: 10.16438/j.0513-4870.2022-0542.

    JIANG N, DU LD, KONG DW, et al. Research progress of cystine/glutamate antiporter as drug targets[J]. Acta Pharmaceutica Sinica, 2022, 57(6): 1621-1629. DOI: 10.16438/j.0513-4870.2022-0542.
    [17]
    BRIDGES RJ, NATALE NR, PATEL SA. System Xc cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1): 20-34. DOI: 10.1111/j.1476-5381.2011.01480.x.
    [18]
    FRIEDMANN ANGELI JP, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. DOI: 10.1038/ncb3064.
    [19]
    LEI G, ZHANG Y, HONG T, et al. Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity[J]. Oncogene, 2021, 40(20): 3533-3547. DOI: 10.1038/s41388-021-01790-w.
    [20]
    BERSUKER K, HENDRICKS JM, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2.
    [21]
    张晓燕, 朱毅, 管又飞. 花生四烯酸代谢与健康和疾病——序言[J]. 生理学报, 2021, 73(4): 535-538. DOI: 10.13294/j.aps.2021.0065.

    ZHANG XY, ZHU Y, GUAN YF. Arachidonic acid metabolism in health and disease: an introduction[J]. Acta Physiologica Sinica, 2021, 73(4): 535-538. DOI: 10.13294/j.aps.2021.0065.
    [22]
    KAGAN VE, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
    [23]
    刘湘慧, 斯韬, 梁婷, 等. 铁死亡发生机制及其在肝细胞癌中的作用研究进展[J]. 陕西医学杂志, 2023, 52(3): 354-357. DOI: 10.3969/j.issn.1000-7377.2023.03.025.

    LIU XH, SI T, LIANG T, et al. Mechanism of ferroptosis and its role in hepatocellular carcinoma[J]. Shaanxi Med J, 2023, 52(3): 354-357. DOI: 10.3969/j.issn.1000-7377.2023.03.025.
    [24]
    TANG LJ, LUO XJ, TU H, et al. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(2): 401-410. DOI: 10.1007/s00210-020-01932-z.
    [25]
    SCINDIA Y, LEEDS J, SWAMINATHAN S. Iron homeostasis in healthy kidney and its role in acute kidney injury[J]. Semin Nephrol, 2019, 39(1): 76-84. DOI: 10.1016/j.semnephrol.2018.10.006.
    [26]
    BRAND MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J]. Free Radic Biol Med, 2016, 100: 14-31. DOI: 10.1016/j.freeradbiomed.2016.04.001.
    [27]
    SALAHUDEEN AK, JOSHI M, JENKINS JK. Apoptosis versus necrosis during cold storage and rewarming of human renal proximal tubular cells[J]. Transplantation, 2001, 72(5): 798-804. DOI: 10.1097/00007890-200109150-00010.
    [28]
    KNIGHT JA, VOORHEES RP, MARTIN L, et al. Lipid peroxidation in stored red cells[J]. Transfusion, 1992, 32(4): 354-357. DOI: 10.1046/j.1537-2995.1992.32492263451.x.
    [29]
    ANEGAWA D, SUGIURA Y, MATSUOKA Y, et al. Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol[J]. Commun Biol, 2021, 4(1): 796. DOI: 10.1038/s42003-021-02297-6.
    [30]
    MARTIN-SANCHEZ D, FONTECHA-BARRIUSO M, MARTINEZ-MORENO JM, et al. Ferroptosis and kidney disease[J]. Nefrologia (Engl Ed), 2020, 40(4): 384-394. DOI: 10.1016/j.nefro.2020.03.005.
    [31]
    LINKERMANN A, SKOUTA R, HIMMERKUS N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47): 16836-16841. DOI: 10.1073/pnas.1415518111.
    [32]
    THAPA K, SINGH TG, KAUR A. Targeting ferroptosis in ischemia/reperfusion renal injury[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(11): 1331-1341. DOI: 10.1007/s00210-022-02277-5.
    [33]
    YE Z, ZHANG L, LI R, et al. Caspase-11 mediates pyroptosis of tubular epithelial cells and septic acute kidney injury[J]. Kidney Blood Press Res, 2019, 44(4): 465-478. DOI: 10.1159/000499685.
    [34]
    MIAO N, YIN F, XIE H, et al. The cleavage of Gasdermin D by Caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury[J]. Kidney Int, 2019, 96(5): 1105-1120. DOI: 10.1016/j.kint.2019.04.035.
    [35]
    MÜLLER T, DEWITZ C, SCHMITZ J, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure[J]. Cell Mol Life Sci, 2017, 74(19): 3631-3645. DOI: 10.1007/s00018-017-2547-4.
    [36]
    WEI Z, HAO C, HUANGFU J, et al. Aging lens epithelium is susceptible to ferroptosis[J]. Free Radic Biol Med, 2021, 167: 94-108. DOI: 10.1016/j.freeradbiomed.2021.02.010.
    [37]
    GO S, KANG M, KWON SP, et al. The senolytic drug JQ1 removes senescent cells via ferroptosis[J]. Tissue Eng Regen Med, 2021, 18(5): 841-850. DOI: 10.1007/s13770-021-00346-z.
    [38]
    LIAO CM, WULFMEYER VC, CHEN R, et al. Induction of ferroptosis selectively eliminates senescent tubular cells[J]. Am J Transplant, 2022, 22(9): 2158-2168. DOI: 10.1111/ajt.17102.
    [39]
    白杨, 史冀华, 张水军. 程序性细胞死亡在肝脏缺血-再灌注损伤中的作用研究进展[J]. 器官移植, 2022, 13(5): 647-652. DOI: 10.3969/j.issn.1674-7445.2022.05.015.

    BAI Y, SHI JH, ZHANG SJ. Research progress on the role of programmed cell death in hepatic ischemia-reperfusion injury[J]. Organ Transplant, 2022, 13(5): 647-652. DOI: 10.3969/j.issn.1674-7445.2022.05.015.
    [40]
    ITO T, NAINI BV, MARKOVIC D, et al. Ischemia-reperfusion injury and its relationship with early allograft dysfunction in liver transplant patients[J]. Am J Transplant, 2021, 21(2): 614-625. DOI: 10.1111/ajt.16219.
    [41]
    YAMADA N, KARASAWA T, WAKIYA T, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis[J]. Am J Transplant, 2020, 20(6): 1606-1618. DOI: 10.1111/ajt.15773.
    [42]
    LENNICKE C, COCHEMÉ HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function[J]. Mol Cell, 2021, 81(18): 3691-3707. DOI: 10.1016/j.molcel.2021.08.018.
    [43]
    LIU H, MAN K. New insights in mechanisms and therapeutics for short- and long-term impacts of hepatic ischemia reperfusion injury post liver transplantation[J]. Int J Mol Sci, 2021, 22(15): 8210. DOI: 10.3390/ijms22158210.
    [44]
    GALLEANO M, TAPIA G, PUNTARULO S, et al. Liver preconditioning induced by iron in a rat model of ischemia/reperfusion[J]. Life Sci, 2011, 89(7/8): 221-228. DOI: 10.1016/j.lfs.2011.06.005.
    [45]
    GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. DOI: 10.1016/j.molcel.2015.06.011.
    [46]
    LI W, FENG G, GAUTHIER JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129(6): 2293-2304. DOI: 10.1172/JCI126428.
    [47]
    CHAN W, TAYLOR AJ, ELLIMS AH, et al. Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction[J]. Circ Cardiovasc Interv, 2012, 5(2): 270-278. DOI: 10.1161/CIRCINTERVENTIONS.111.966226.
    [48]
    YOSHIDA M, MINAGAWA S, ARAYA J, et al. Involvement of cigarette smoke-induced epithelial cell ferroptosis in COPD pathogenesis[J]. Nat Commun, 2019, 10(1): 3145. DOI: 10.1038/s41467-019-10991-7.
    [49]
    XU Y, LI X, CHENG Y, et al. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion[J]. FASEB J, 2020, 34(12): 16262-16275. DOI: 10.1096/fj.202001758R.
    [50]
    沙小兰, 李玉兰, 王晓霞, 等. 去铁胺对高氧机械通气大鼠肺表面活性蛋白D和抗氧化酶的影响[J]. 临床麻醉学杂志, 2019, 35(10): 1002-1005. DOI: 10.12089/jca.2019.10.016.

    SHA XL, LI YL, WANG XX, et al. Effect of deferoxamine on pulmonary surfactant protein D and antioxidant enzymes in rats exposed to hyperoxia ventilation[J]. J Clin Anesthesiol, 2019, 35(10): 1002-1005. DOI: 10.12089/jca.2019.10.016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (372) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return