Volume 14 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Halinuer Shadekejiang, Dong Jin, Wu Xiongfei, et al. Application progress in classification of puncture biopsy after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 612-618. doi: 10.3969/j.issn.1674-7445.2023.04.020
Citation: Halinuer Shadekejiang, Dong Jin, Wu Xiongfei, et al. Application progress in classification of puncture biopsy after kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 612-618. doi: 10.3969/j.issn.1674-7445.2023.04.020

Application progress in classification of puncture biopsy after kidney transplantation

doi: 10.3969/j.issn.1674-7445.2023.04.020
  • Received Date: 2023-02-12
    Available Online: 2023-07-13
  • Publish Date: 2023-07-15
  • Renal allograft biopsy (biopsy) remains the "gold standard" for the diagnosis of renal dysfunction after kidney transplantation. Puncture biopsy after kidney transplantation could be divided into indicative biopsy and protocol biopsy according to renal function of the patients. Indicative biopsy is mainly applied to diagnose postoperative complications of kidney transplantation, evaluate the severity of disease and guide subsequent treatment. Protocol biopsy is primarily employed to regular monitor renal allograft function of kidney transplant recipients and exclude subclinical rejection and other complications. Due to the willingness of patients and other reasons, protocol biopsy has not been widely applied in China. Currently, indicative biopsy is the main biopsy pattern. At present, the indications of puncture of indicative biopsy, the timing and necessity of puncture of protocol biopsy remain controversial. In this article, the classification of puncture biopsy after kidney transplantation and research progress on tissue biomarkers based on biopsy were reviewed, aiming to assist clinical diagnosis and targeted treatment of complications after kidney transplantation and provide reference for further improving the survival of renal allografts and recipients.

     

  • loading
  • [1]
    Global observatory on donation and transplantation[EB/ OL]. [2023-01-03]. https://www.transplant-observatory.org/.
    [2]
    CHEN CC, LIN WC, LEE CY, et al. Two-year protocol biopsy after kidney transplantation in clinically stable recipients -a retrospective study[J]. Transpl Int, 2021, 34(1): 185-193. DOI: 10.1111/tri.13785.
    [3]
    陈实, 郭晖. 移植病理学[M]. 北京: 人民卫生出版社, 2009.
    [4]
    NAKAGAWA K, TSUCHIMOTO A, UEKI K, et al. Significance of revised criteria for chronic active T cellmediated rejection in the 2017 Banff classification: surveillance by 1-year protocol biopsies for kidney transplantation[J]. Am J Transplant, 2021, 21(1): 174-185. DOI: 10.1111/ajt.16093.
    [5]
    郭晖, 陈刚. Banff移植病理学诊断标准的起源、发展及对器官移植的推动作用[J]. 器官移植, 2021, 12(1): 15-22. DOI: 10.3969/j.issn.1674-7445.2021.01.003.

    GUO H, CHEN G. The origin and development of Banff classification on allograft pathology and its effects in promoting organ transplantation[J]. Organ Transplant, 2021, 12(1): 15-22. DOI: 10.3969/j.issn.1674-7445.2021.01.003.j.issn.1674-7445.2021.01.003.
    [6]
    HU XJ, ZHENG J, LI Y, et al. Prediction of kidney transplant outcome based on different DGF definitions in Chinese deceased donation[J]. BMC Nephrol, 2019, 20(1): 409. DOI: 10.1186/s12882-019-1557-x.
    [7]
    MEZZOLLA V, PONTRELLI P, FIORENTINO M, et al. Emerging biomarkers of delayed graft function in kidney transplantation[J]. Transplant Rev (Orlando), 2021, 35(4): 100629. DOI: 10.1016/j.trre.2021.100629.
    [8]
    CASTRO FILHO JBS, POMPEO JC, MACHADO RB, et al. Delayed graft function under the microscope: surveillance biopsies in kidney transplantation[J]. Transpl Int, 2022, 35: 10344. DOI: 10.3389/ti.2022.10344.
    [9]
    KASISKE BL, ZEIER MG, CHAPMAN JR, et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary[J]. Kidney Int, 2010, 77(4): 299-311. DOI: 10.1038/ki.2009.377.
    [10]
    BIA M, ADEY DB, BLOOM RD, et al. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the care of kidney transplant recipients[J]. Am J Kidney Dis, 2010, 56(2): 189-218. DOI: 10.1053/j.ajkd.2010.04.010.
    [11]
    FAVI E, JAMES A, PULIATTI C, et al. Utility and safety of early allograft biopsy in adult deceased donor kidney transplant recipients[J]. Clin Exp Nephrol, 2020, 24(4): 356-368. DOI: 10.1007/s10157-019-01821-7.
    [12]
    CHERUKURI A, MEHTA R, SOOD P, et al. Early allograft inflammation and scarring associate with graft dysfunction and poor outcomes in renal transplant recipients with delayed graft function: a prospective single center cohort study[J]. Transpl Int, 2018, 31(12): 1369-1379. DOI: 10.1111/tri.13318.
    [13]
    HATOUM HH, PATEL A, VENKAT KK. The utility of serial allograft biopsies during delayed graft function in renal transplantation under current immunosuppressive regimens[J]. ISRN Nephrol, 2014: 292305. DOI: 10.1155/2014/292305.
    [14]
    GUETTA O, OSYNTSOV A, RAHAMIMOV R, et al. The role of early sequential biopsies in delayed renal graft function of transplanted kidney is reduced in modern immunosuppression era[J]. Nephron, 2023, 147(3/4): 127-133. DOI: 10.1159/000525912.
    [15]
    KASISKE BL, ANDANY MA, DANIELSON B. A thirty percent chronic decline in inverse serum creatinine is an excellent predictor of late renal allograft failure[J]. Am J Kidney Dis, 2002, 39(4): 762-768. DOI: 10.1053/ajkd.2002.31996.
    [16]
    ZHANG Q, RUDOLPH B, CHOI M, et al. The relationship between proteinuria and allograft survival in patients with transplant glomerulopathy: a retrospective single-center cohort study[J]. Transpl Int, 2021, 34(2): 259-271. DOI: 10.1111/tri.13787.
    [17]
    PARAJULI S, SWANSON KJ, ALSTOTT J, et al. Transplant kidney biopsy for proteinuria with stable creatinine: findings and outcomes[J]. Clin Transplant, 2021, 35(10): e14436. DOI: 10.1111/ctr.14436.
    [18]
    HALIMI JM. Low-grade proteinuria and microalbuminuria in renal transplantation[J]. Transplantation, 2013, 96(2): 121-130. DOI: 10.1097/TP.0b013e31828719fb.
    [19]
    NAESENS M, LERUT E, EMONDS MP, et al. Proteinuria as a noninvasive marker for renal allograft histology and failure: an observational cohort study[J]. J Am Soc Nephrol, 2016, 27(1): 281-292. DOI: 10.1681/asn.2015010062.
    [20]
    MASSY ZA, GUIJARRO C, WIEDERKEHR MR, et al. Chronic renal allograft rejection: immunologic and nonimmunologic risk factors[J]. Kidney Int, 1996, 49(2): 518-524. DOI: 10.1038/ki.1996.74.
    [21]
    赵明辉. 肾脏病临床概论[M]. 2版. 北京: 北京大学医学出版社, 2021: 668-692.
    [22]
    RUSH D, NICKERSON P, GOUGH J, et al. Beneficial effects of treatment of early subclinical rejection: a randomized study[J]. J Am Soc Nephrol, 1998, 9(11): 2129-2134. DOI: 10.1681/asn.V9112129.
    [23]
    ROBERTS IS, REDDY S, RUSSELL C, et al. Subclinical rejection and borderline changes in early protocol biopsy specimens after renal transplantation[J]. Transplantation, 2004, 77(8): 1194-1198. DOI: 10.1097/01.tp.0000118905.98469.91.
    [24]
    NANKIVELL BJ, CHAPMAN JR. The significance of subclinical rejection and the value of protocol biopsies[J]. Am J Transplant, 2006, 6(9): 2006-2012. DOI: 10.1111/j.1600-6143.2006.01436.x.
    [25]
    METTER C, TORREALBA JR. Pathology of the kidney allograft[J]. Semin Diagn Pathol, 2020, 37(3): 148-153. DOI: 10.1053/j.semdp.2020.03.005.
    [26]
    HUANG Y, FARKASH E. Protocol biopsies: utility and limitations[J]. Adv Chronic Kidney Dis, 2016, 23(5): 326-331. DOI: 10.1053/j.ackd.2016.09.002.
    [27]
    SZEDERKÉNYI E, IVÁNYI B, MORVAY Z, et al. Treatment of subclinical injuries detected by protocol biopsy improves the long-term kidney allograft function: a single center prospective randomized clinical trial[J]. Transplant Proc, 2011, 43(4): 1239-1243. DOI: 10.1016/j.transproceed.2011.03.078.
    [28]
    RUSH D, ARLEN D, BOUCHER A, et al. Lack of benefit of early protocol biopsies in renal transplant patients receiving TAC and MMF: a randomized study[J]. Am J Transplant, 2007, 7(11): 2538-2545. DOI: 10.1111/j.1600-6143.2007.01979.x.
    [29]
    BUEHRIG CK, LAGER DJ, STEGALL MD, et al. Influence of surveillance renal allograft biopsy on diagnosis and prognosis of polyomavirus-associated nephropathy[J]. Kidney Int, 2003, 64(2): 665-673. DOI: 10.1046/j.1523-1755.2003.00103.x.
    [30]
    MEHTA R, CHERIKH W, SOOD P, et al. Kidney allograft surveillance biopsy practices across US transplant centers: a UNOS survey[J]. Clin Transplant, 2017, 31(5). DOI: 10.1111/ctr.12945.
    [31]
    SCHWARZ A, GWINNER W, HISS M, et al. Safety and adequacy of renal transplant protocol biopsies[J]. Am J Transplant, 2005, 5(8): 1992-1996. DOI: 10.1111/j.1600-6143.2005.00988.x.
    [32]
    FURNESS PN, PHILPOTT CM, CHORBADJIAN MT, et al. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates[J]. Transplantation, 2003, 76(6): 969-973. DOI: 10.1097/01.Tp.0000082542.99416.11.
    [33]
    LOUPY A, MENGEL M, HAAS M. Thirty years of the International Banff Classification for Allograft Pathology: the past, present, and future of kidney transplant diagnostics[J]. Kidney Int, 2022, 101(4): 678-691. DOI: 10.1016/j.kint.2021.11.028.
    [34]
    MENGEL M, LOUPY A, HAAS M, et al. Banff 2019 meeting report: molecular diagnostics in solid organ transplantation-consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation[J]. Am J Transplant, 2020, 20(9): 2305-2317. DOI: 10.1111/ajt.16059.
    [35]
    VAROL H, ERNST A, CRISTOFERI I, et al. Feasibility and potential of transcriptomic analysis using the nanostring ncounter technology to aid the classification of rejection in kidney transplant biopsies[J]. Transplantation, 2023, 107(4): 903-912. DOI: 10.1097/tp.0000000000004372.
    [36]
    SMITH RN, ROSALES IA, TOMASZEWSKI KT, et al. Utility of Banff Human Organ Transplant gene panel in human kidney transplant biopsies[J]. Transplantation, 2023, 107(5): 1188-1199. DOI: 10.1097/tp.0000000000004389.
    [37]
    VAN BAARDWIJK M, CRISTOFERI I, JU J, et al. A decentralized kidney transplant biopsy classifier for transplant rejection developed using genes of the BanffHuman Organ Transplant panel[J]. Front Immunol, 2022, 13: 841519. DOI: 10.3389/fimmu.2022.841519.
    [38]
    SMITH RN. In-silico performance, validation, and modeling of the Nanostring Banff Human Organ Transplant gene panel using archival data from human kidney transplants[J]. BMC Med Genomics, 2021, 14(1): 86. DOI: 10.1186/s12920-021-00891-5.
    [39]
    ROSALES I A, MAHOWALD G K, TOMASZEWSKI K, et al. Banff Human Organ Transplant transcripts correlate with renal allograft pathology and outcome: importance of capillaritis and subpathologic rejection[J]. J Am Soc Nephrol, 2022, 33(12): 2306-2319. DOI: 10.1681/asn.2022040444.
    [40]
    SWANSON KJ, AZIZ F, GARG N, et al. Role of novel biomarkers in kidney transplantation[J]. World J Transplant, 2020, 10(9): 230-255. DOI: 10.5500/wjt.v10.i9.230.
    [41]
    王策. 蛋白质组学在肾移植急性排斥反应标志物筛选中的应用进展[J]. 医学分子生物学杂志, 2022, 19(6): 514-517. DOI: 10.3870/j.issn.1672-8009.2022.06.013.

    WANG C. Application of proteomics in screening markers of acute rejection in renal transplantation[J]. J Med Mol Biol, 2022, 19(6): 514-517. DOI: 10.3870/j.issn.1672-8009.2022.06.013.j.issn.1672-8009.2022.06.013.
    [42]
    朱亚香, 赵帅林, 杨关印, 等. 移植肾急性排斥反应生物学标记物的研究进展[J] 吉林大学学报(医学版), 2019, 45(5): 1182-1187. DO1: 10.13481/j.1671-587x.20190536. doi: 10.13481/j.1671-587x.20190536

    ZHU YX, ZHAO SL, YANG GY, et al. Research progress in biomarkers of acute allograft rejection in kidney transplantation[J]. J Jilin Univ (Med Edit), 2019, 45(5): 1182-1187. DOI: 10.13481/j.1671-587x.20190536.
    [43]
    HIRT-MINKOWSKI P, HANDSCHIN J, STAMPF S, et al. Randomized trial to assess the clinical utility of renal allograft monitoring by urine CXCL10 chemokine[J]. J Am Soc Nephrol, 2023, DOI: 10.1681/AS.0000000000060[Epubaheadofprint].
    [44]
    HO J, SCHAUB S, JACKSON AM, et al. Multicenter validation of a urine CXCL10 assay for noninvasive monitoring of renal transplants[J]. Transplantation, 2023, 107(7): 1630-1641. DOI: 10.10970P0000000000554.
    [45]
    JEON HJ, LEE JG, KIM K, et al. Peripheral blood transcriptome analysis and development of classification model for diagnosing antibody-mediated rejection vs accommodation in ABO-incompatible kidney transplant[J]. Am J Transplant, 2020, 20(1): 112-124. DOI: 10.1111/ajt.15553.
    [46]
    杨洋, 张健, 林俊. 供者来源性细胞游离DNA在肾移植诊疗中的研究进展与应用[J]. 器官移植, 2022, 13(4): 455-462. DOI: 10.3969/j.issn.1674-7445.2022.04.007.

    YANG Y, ZHANG J, LIN J. Research progress and application of donor-derived cell-free DNA in diagnosis and treatment of kidney transplantation[J]. Organ Transplant, 2022, 13(4): 455-462. DOI: 10.3969/j.issn.1674-7445.2022.04.007.j.issn.1674-7445.2022.04.007.
    [47]
    ZHANG W, YI Z, KEUNG KL, et al. A peripheral blood gene expression signature to diagnose subclinical acute rejection[J]. J Am Soc Nephrol, 2019, 30(8): 1481-1494. DOI: 10.1681/asn.2018111098.
    [48]
    PARK S, GUO K, HEILMAN RL, et al. Combining blood gene expression and cellfree DNA to diagnose subclinical rejection in kidney transplant recipients[J]. Clin J Am Soc Nephrol, 2021, 16(10): 1539-1551. DOI: 10.2215/cjn.05530421.
    [49]
    郑瑾, 薛武军. 肾移植新兴生物标志物之研究进展[J]. 器官移植, 2023, 14(2): 194-200. DOI: 10.3969/j.issn.1674-7445.2023.02.003.

    ZHENG J, XUE WJ. Research progress on emerging biomarkers in kidney transplantation[J]. Organ Transplant, 2023, 14(2): 194-200. DOI: 10.3969/j.issn.1674-7445.2023.02.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (370) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return