Volume 14 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
Yang Yuwei, Li Wanli, Chen Jibing, et al. In vitro research of mesenchymal stem cell-coated human islets to alleviate instant blood-mediated inflammatory reaction[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 562-569. doi: 10.3969/j.issn.1674-7445.2023.04.013
Citation: Yang Yuwei, Li Wanli, Chen Jibing, et al. In vitro research of mesenchymal stem cell-coated human islets to alleviate instant blood-mediated inflammatory reaction[J]. ORGAN TRANSPLANTATION, 2023, 14(4): 562-569. doi: 10.3969/j.issn.1674-7445.2023.04.013

In vitro research of mesenchymal stem cell-coated human islets to alleviate instant blood-mediated inflammatory reaction

doi: 10.3969/j.issn.1674-7445.2023.04.013
More Information
  • Corresponding author: Gao Hongjun, Email: gao4056@163.com
  • Received Date: 2023-02-15
    Available Online: 2023-07-13
  • Publish Date: 2023-07-15
  •   Objective  To evaluate the effect of mesenchymal stem cell (MSC) coated-islets on instant blood-mediated inflammatory reaction (IBMIR) after islet transplantation.  Methods  MSC labeled with tracer and human islets were placed into an ultra-low adsorption cell culture dish, shaken and mixed twice at an interval of 0.5 h, and then incubated at 37 ℃ and 5% CO2 for 24 h to obtain MSC-coated islets. The coating effect of MSC and in vitro function of the islets were assessed. A blood circulation tube-shaped model was established in vitro. In the blank control group, 0.2 mL of islet culture solution was added. In the islet group, 800 islet equivalent quantity (IEQ) of uncoated islets were supplemented. In the MSC-coated islets group, 800 IEQ of MSC-coated islets were added, and circulated for 60 min at 37 ℃. A portion of 0.5 mL blood sample was taken for routine blood test at 0, 30 and 60 min, respectively. After 60 min circulation, the blood sample was filtered with a 70 μm filter to collect plasma, blood clots and islets. Blood clots and islets were subject to hematoxylin-eosin (HE) staining and immunohistochemical staining. Morphological changes and the aggregation of CD11b-positive cells surrounding the islets were observed. The contents of plasma thrombin-antithrombin complex (TAT), tissue factor (TF), C3a, C5b-9, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1 and IL-8 were determined by enzyme-linked immune absorbent assay.  Results  After 24 h co-incubation, the islets were coated by MSC, with a coating degree of approximately 80%. In the islet and MSC-coated islet group, a large quantity of neutrophils and monocytes were observed surrounding the blood clots and islets, and the quantity of CD11b-positive cells in the MSC-coated islet group was less compared with that in the islet group. After co-incubation with the whole blood for 0, 30 and 60 min, the quantity of platelets, neutrophils and monocytes was declined in the MSC-coated and islet groups, and gradually decreased over time. Compared with the blank control group, the quantity of platelets, monocytes and neutrophils was lower, whereas the TF content was higher in the MSC-coated islet group. Compared with the islet group, the quantity of platelets, monocytes and neutrophils was higher, whereas the TAT and TF contents were less in the MSC-coated islet group, the differences were statistically significant (all P < 0.05). Compared with the blank control group, the expression levels of C3a, C5b-9, IL-6, TNF-α and IL-8 were up-regulated in the MSC-coated islet group. Compared with the islet group, the expression levels of C3a, C5b-9, IL-1β, IL-6, TNF-α, IL-8 and MCP-1 were down-regulated in the MSC-coated islet group, and the differences were statistically significant (all P < 0.05).  Conclusions  MSC-coated islets may reduce the exposure of islet TF in the blood and prevent the incidence of IBMIR during the coagulation response stage, thereby mitigating the injury and loss of islet allograft in the early stage of islet transplantation.

     

  • loading
  • [1]
    YAN LL, YE LP, CHEN YH, et al. The influence of microenvironment on survival of intraportal transplanted islets[J]. Front Immunol, 2022, 13: 849580. DOI: 10.3389/fimmu.2022.849580.
    [2]
    RICKELS MR, ROBERTSON RP. Pancreatic islet transplantation in humans: recent progress and future directions[J]. Endocr Rev, 2019, 40(2): 631-668. DOI: 10.1210/er.2018-00154.
    [3]
    CAYABYAB F, NIH LR, YOSHIHARA E. Advances in pancreatic islet transplantation sites for the treatment of diabetes[J]. Front Endocrinol (Lausanne), 2021, 12: 732431. DOI: 10.3389/fendo.2021.732431.
    [4]
    CHENG Y, WANG B, LI H, et al. Mechanism for the instant blood-mediated inflammatory reaction in rat islet transplantation[J]. Transplant Proc, 2017, 49(6): 1440-1443. DOI: 10.1016/j.transproceed.2017.03.090.
    [5]
    张声旺, 颜海雄, 马小倩, 等. 不同路径肝素对门静脉胰岛移植术后立即经血液介导炎症反应的影响[J]. 中南大学学报(医学版), 2022, 47(1): 1-7. DOI: 10.11817/j.issn.1672-7347.2022.200993.

    ZHANG SW, YAN HX, MA XQ, et al. Effects of different routes of heparin on instant blood-mediated inflammatory reaction after portal vein islet transplantation[J]. J Central South Univ (Med Sci), 2022, 47(1): 1-7. DOI: 10.11817/j.issn.1672-7347.2022.200993.
    [6]
    SHRESTHA P, BATRA L, TARIQ MALIK M, et al. Immune checkpoint CD47 molecule engineered islets mitigate instant blood-mediated inflammatory reaction and show improved engraftment following intraportal transplantation[J]. Am J Transplant, 2020, 20(10): 2703-2714. DOI: 10.1111/ajt.15958.
    [7]
    汪海燕, 韩钦, 赵春华. 间充质干细胞的免疫调节可塑性及其临床应用策略[J]. 基础医学与临床, 2023, 43(1): 2-11. DOI: 10.16352/j.issn.1001-6325.2023.01.0002.

    WANG HY, HAN Q, ZHAO CH, et al. Immunomodulatory plasticity of mesenchymal stem cells and the strategy of clinical application[J]. Basic Clin Med, 2023, 43(1): 2-11. DOI: 10.16352/j.issn.1001-6325.2023.01.0002.
    [8]
    DE KLERK E, HEBROK M. Stem cell-based clinical trials for diabetes mellitus[J]. Front Endocrinol (Lausanne), 2021, 12: 631463. DOI: 10.3389/fendo.2021.631463.
    [9]
    YAMASHITA M, ADACHI T, ADACHI T, et al. Subcutaneous transplantation of engineered islet/adipose-derived mesenchymal stem cell sheets in diabetic pigs with total pancreatectomy[J]. Regen Ther, 2021, 16: 42-52. DOI: 10.1016/j.reth.2020.12.005.
    [10]
    SI Z, WANG X, SUN C, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies[J]. Biomed Pharmacother, 2019, 114: 108765. DOI: 10.1016/j.biopha.2019.108765.
    [11]
    HUBBER EL, RACKHAM CL, JONES PM. Protecting islet functional viability using mesenchymal stromal cells[J]. Stem Cells Transl Med, 2021, 10(5): 674-680. DOI: 10.1002/sctm.20-0466.
    [12]
    SCHIVE SW, MIRLASHARI MR, HASVOLD G, et al. Human adipose-derived mesenchymal stem cells respond to short-term hypoxia by secreting factors beneficial for human islets in vitro and potentiate antidiabetic effect in vivo[J]. Cell Med, 2017, 9(3): 103-116. DOI: 10.3727/215517917X693401.
    [13]
    KOEHLER N, BUHLER L, EGGER B, et al. Multipotent mesenchymal stromal cells interact and support islet of langerhans viability and function[J]. Front Endocrinol (Lausanne), 2022, 13: 822191. DOI: 10.3389/fendo.2022.822191.
    [14]
    RAZAVI M, REN T, ZHENG F, et al. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound[J]. Stem Cell Res Ther, 2020, 11(1): 405. DOI: 10.1186/s13287-020-01897-z.
    [15]
    WANG H, STRANGE C, NIETERT PJ, et al. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy[J]. Stem Cells Transl Med, 2018, 7(1): 11-19. DOI: 10.1002/sctm.17-0139.
    [16]
    GUSTAFSON E, ASIF S, KOZARCANIN H, et al. Control of IBMIR induced by fresh and cryopreserved hepatocytes by low molecular weight dextran sulfate versus heparin[J]. Cell Transplant, 2017, 26(1): 71-81. DOI: 10.3727/096368916X692609.
    [17]
    DUPREZ IR, JOHANSSON U, NILSSON B, et al. Preparatory studies of composite mesenchymal stem cell islets for application in intraportal islet transplantation[J]. Ups J Med Sci, 2011, 116(1): 8-17. DOI: 10.3109/03009734.2010.524320.
    [18]
    DE TONI T, STOCK AA, DEVAUX F, et al. Parallel evaluation of polyethylene glycol conformal coating and alginate microencapsulation as immunoisolation strategies for pancreatic islet transplantation[J]. Front Bioeng Biotechnol, 2022, 10: 886483. DOI: 10.3389/fbioe.2022.886483.
    [19]
    李万里, 丰丙政, 杨玉伟, 等. 微囊化胰岛移植优化策略研究进展[J]. 器官移植, 2022, 13(2): 258-265. DOI: 10.3969/j.issn.1674-7445.2022.02.016.

    LI WL, FENG BZ, YANG YW, et al. Research progress on optimization strategies for microencapsulated islet transplantation[J]. Organ Transplant, 2022, 13(2): 258-265. DOI: 10.3969/j.issn.1674-7445.2022.02.016.
    [20]
    PATHAK S, PHAM TT, JEONG JH, et al. Immunoisolation of pancreatic islets via thin-layer surface modification[J]. J Control Release, 2019, 305: 176-193. DOI: 10.1016/j.jconrel.2019.04.034.
    [21]
    柏雪, 王彬, 何斯荣. 胰岛移植物封装水凝胶材料研究的重点和应用优势[J]. 中国组织工程研究, 2021, 25(10): 1585-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202110023.htm

    BO X, WANG B, HE SR. Research focus and application advantages in encapsulating biomaterial for islet transplantation[J]. Chin J Tissue Eng Res, 2021, 25(10): 1585-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKF202110023.htm
    [22]
    HARRELL CR, VOLAREVIC A, DJONOV VG, et al. Mesenchymal stem cell: a friend or foe in anti-tumor immunity[J]. Int J Mol Sci, 2021, 22(22): 12429. DOI: 10.3390/ijms222212429.
    [23]
    陶宁, 王华. 间充质干细胞衰老的研究进展[J]. 中国医药生物技术, 2023, 18(1): 56-59. DOI: 10.3969/j.issn.1673-713X.2023.01.011.

    TAO N, WANG H. Research progress of mesenchymal stem cell aging[J]. Chin Med Biotechnol, 2023, 18(1): 56-59. DOI: 10.3969/j.issn.1673-713X.2023.01.011.
    [24]
    RODRÍGUEZ-FUENTES DE, FERNÁNDEZ-GARZA LE, SAMIA-MEZA JA, et al. Mesenchymal stem cells current clinical applications: a systematic review[J]. Arch Med Res, 2021, 52(1): 93-101. DOI: 10.1016/j.arcmed.2020.08.006.
    [25]
    潘仕达, 苏楠, 王嗣予, 等. 脐带间充质干细胞治疗熊去氧胆酸应答不佳的原发性胆汁性胆管炎的临床观察[J/CD]. 中华细胞与干细胞杂志(电子版), 2022, 12(1): 26-33. DOI: 10.3877/cma.j.issn.2095-1221.2022.01.005.

    PAN SD, SU N, WANG SY, et al. Clinical observation of umbilical cord mesenchymal stem cell therapy on patients with primary biliary cholangitis with poor response to ursodeoxycholic acid[J/CD]. Chin J Cell Stem Cell (Electr Edit), 2022, 12(1): 26-33. DOI: 10.3877/cma.j.issn.2095-1221.2022.01.005.
    [26]
    YANG N, MA W, KE Y, et al. Transplantation of adipose-derived stem cells ameliorates Echinococcus multilocularis-induced liver fibrosis in mice[J]. PLoS Negl Trop Dis, 2022, 16(1): e0010175. DOI: 10.1371/journal.pntd.0010175.
    [27]
    韩霞, 云升. 人脐带血单个核细胞联合人脐带间充质干细胞疗法对乙型肝炎肝硬化患者肝功能、炎症程度及免疫功能的影响[J]. 临床肝胆病杂志, 2021, 37(8): 1822-1828. DOI: 10.3969/j.issn.1001-5256.2021.08.016.

    HAN X, YUN S. Effect of combined treatment with human umbilical cord blood mononuclear cells and human umbilical cord mesen- chymal stem cells on liver function, inflammation grade, and immune function in patients with hepatitis B cirrhosis[J]. J Clin Hepatol, 2021, 37(8): 1822-1828. DOI: 10.3969/j.issn.1001-5256.2021.08.016.
    [28]
    LIN F, CHEN W, ZHOU J, et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury[J]. Cell Death Dis, 2022, 13(3): 271. DOI: 10.1038/s41419-022-04708-w.
    [29]
    ZHOU J, FENG X, ZHU J, et al. Mesenchymal stem cell treatment restores liver macrophages homeostasis to alleviate mouse acute liver injury revealed by single-cell analysis[J]. Pharmacol Res, 2022, 179: 106229. DOI: 10.1016/j.phrs.2022.106229.
    [30]
    YAO M, DOMOGATSKAYA A, ÅGREN N, et al. Cibinetide protects isolated human islets in a stressful environment and improves engraftment in the perspective of intra portal islet transplantation[J]. Cell Transplant, 2021, 30: 9636897211039739. DOI: 10.1177/09636897211039739.
    [31]
    BERGMAN ZR, ROBBINS AJ, ALWAN FS, et al. Perioperative coagulation changes in total pancreatectomy and islet autotransplantation[J]. Pancreas, 2022, 51(6): 671-677. DOI: 10.1097/MPA.0000000000002085.
    [32]
    SCHMIDT CQ, SCHREZENMEIER H, KAVANAGH D. Complement and the prothrombotic state[J]. Blood, 2022, 139(13): 1954-1972. DOI: 10.1182/blood.2020007206.
    [33]
    HUANG Y, XU W, ZHOU R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9): 2114-2127. DOI: 10.1038/s41423-021-00740-6.
    [34]
    AKHTER N, WILSON A, THOMAS R, et al. ROS/TNF-α crosstalk triggers the expression of IL-8 and MCP-1 in human monocytic THP-1 cells via the NF-κB and ERK1/2 mediated signaling[J]. Int J Mol Sci, 2021, 22(19): 10519. DOI: 10.3390/ijms221910519.
    [35]
    JUNG HS, KIM MJ, HONG SH, et al. The potential of endothelial colony-forming cells to improve early graft loss after intraportal islet transplantation[J]. Cell Transplant, 2014, 23(3): 273-283. DOI: 10.3727/096368912X661364.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (313) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return