Volume 14 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Li Dawei, Zhang Ming. Progress on diagnosis and treatment of kidney transplantation-associated thrombotic microangiopathy[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 68-74. doi: 10.3969/j.issn.1674-7445.2023.01.009
Citation: Li Dawei, Zhang Ming. Progress on diagnosis and treatment of kidney transplantation-associated thrombotic microangiopathy[J]. ORGAN TRANSPLANTATION, 2023, 14(1): 68-74. doi: 10.3969/j.issn.1674-7445.2023.01.009

Progress on diagnosis and treatment of kidney transplantation-associated thrombotic microangiopathy

doi: 10.3969/j.issn.1674-7445.2023.01.009
More Information
  • Corresponding author: Zhang Ming, Email: drmingzhang@126.com
  • Received Date: 2022-09-28
    Available Online: 2023-01-17
  • Publish Date: 2023-01-15
  • Thrombotic microangiopathy (TMA) is a severe complication after kidney transplantation, mainly characterized by thrombocytopenia, microvascular hemolytic anemia and acute kidney injury, which may lead to kidney allograft failure or even death of the recipients. With the increasing quantity of solid organ transplantation in China and deeper understanding of TMA, relevant in-depth studies have been gradually carried out. Kidney transplantation-associated TMA is characterized with different causes and clinical manifestations. Non-invasive specific detection approach is still lacking. The diagnosis of TMA mainly depends on renal biopsy. However, most TMA patients are complicated with significant thrombocytopenia. Hence, renal puncture is a risky procedure. It is difficult to make a definite diagnosis. For kidney transplantation-associated TMA, plasma exchange, intravenous immunoglobulin and withdrawal of potential risk drugs are commonly employed. Nevertheless, the overall prognosis is poor. In this article, the classification of TMA after kidney transplantation, diagnosis and treatment of kidney transplantation-associated TMA were reviewed, aiming to provide reference for clinical diagnosis and treatment of kidney transplantation-associated TMA.

     

  • loading
  • [1]
    VAN HERPT TTW, TIMMERMANS SAMEG, VAN MOOK WNKA, et al. Postsurgical thrombotic microangiopathy and deregulated complement[J]. J Clin Med, 2022, 11(9): 2501. DOI: 10.3390/jcm11092501.
    [2]
    ABOU-ISMAIL MY, KAPOOR S, CITLA SRIDHAR D, et al. Thrombotic microangiopathies: an illustrated review[J]. Res Pract Thromb Haemost, 2022, 6(3): e12708. DOI: 10.1002/rth2.12708.
    [3]
    ÁVILA A, GAVELA E, SANCHO A. Thrombotic microangiopathy after kidney transplantation: an underdiagnosed and potentially reversible entity[J]. Front Med (Lausanne), 2021, 8: 642864. DOI: 10.3389/fmed.2021.642864.
    [4]
    BROCKLEBANK V, WOOD KM, KAVANAGH D. Thrombotic microangiopathy and the kidney[J]. Clin J Am Soc Nephrol, 2018, 13(2): 300-317. DOI: 10.2215/CJN.00620117.
    [5]
    VANIKAR AV, KANODIA KV, SUTHAR KS, et al. Thrombotic microangiopathy in a renal allograft: single-center five-year experience[J]. Saudi J Kidney Dis Transpl, 2020, 31(6): 1331-1343. DOI: 10.4103/1319-2442.308342.
    [6]
    SAIKUMAR DORADLA LP, LAL H, KAUL A, et al. Clinical profile and outcomes of de novo posttransplant thrombotic microangiopathy[J]. Saudi J Kidney Dis Transpl, 2020, 31(1): 160-168. DOI: 10.4103/1319-2442.279936.
    [7]
    MULGAONKAR S, KAUFMAN DB. Conversion from calcineurin inhibitor-based immunosuppression to mammalian target of rapamycin inhibitors or belatacept in renal transplant recipients[J]. Clin Transplant, 2014, 28(11): 1209-1224. DOI: 10.1111/ctr.12453.
    [8]
    NAGAO RJ, MARCU R, SHIN YJ, et al. Cyclosporine induces fenestra-associated injury in human renal microvessels in vitro[J]. ACS Biomater Sci Eng, 2022, 8(1): 196-207. DOI: 10.1021/acsbiomaterials.1c00986.
    [9]
    WU Q, WANG X, NEPOVIMOVA E, et al. Mechanism of cyclosporine A nephrotoxicity: oxidative stress, autophagy, and signaling[J]. Food Chem Toxicol, 2018, 118: 889-907. DOI: 10.1016/j.fct.2018.06.054.
    [10]
    VERPOOTEN GA, COOLS FJ, VAN DER PLANKEN MG, et al. Elevated plasminogen activator inhibitor levels in cyclosporin-treated renal allograft recipients[J]. Nephrol Dial Transplant, 1996, 11(2): 347-351. DOI: 10.1093/oxfordjournals.ndt.a027265.
    [11]
    RENNER B, KLAWITTER J, GOLDBERG R, et al. Cyclosporine induces endothelial cell release of complement-activating microparticles[J]. J Am Soc Nephrol, 2013, 24(11): 1849-1862. DOI: 10.1681/ASN.2012111064.
    [12]
    NAVA F, CAPPELLI G, MORI G, et al. Everolimus, cyclosporine, and thrombotic microangiopathy: clinical role and preventive tools in renal transplantation[J]. Transplant Proc, 2014, 46(7): 2263-2268. DOI: 10.1016/j.transproceed.2014.07.062.
    [13]
    KEIR LS, FIRTH R, APONIK L, et al. VEGF regulates local inhibitory complement proteins in the eye and kidney[J]. J Clin Invest, 2017, 127(1): 199-214. DOI: 10.1172/JCI86418.
    [14]
    AL-NOURI ZL, REESE JA, TERRELL DR, et al. Drug-induced thrombotic microangiopathy: a systematic review of published reports[J]. Blood, 2015, 125(4): 616-618. DOI: 10.1182/blood-2014-11-611335.
    [15]
    BAID-AGRAWAL S, FARRIS AB 3RD, PASCUAL M, et al. Overlapping pathways to transplant glomerulopathy: chronic humoral rejection, hepatitis C infection, and thrombotic microangiopathy[J]. Kidney Int, 2011, 80(8): 879-885. DOI: 10.1038/ki.2011.194.
    [16]
    RANE S, NADA R, MINZ M, et al. Spectrum of cytomegalovirus-induced renal pathology in renal allograft recipients[J]. Transplant Proc, 2012, 44(3): 713-716. DOI: 10.1016/j.transproceed.2011.11.052.
    [17]
    JAVA A, EDWARDS A, ROSSI A, et al. Cytomegalovirus-induced thrombotic microangiopathy after renal transplant successfully treated with eculizumab: case report and review of the literature[J]. Transpl Int, 2015, 28(9): 1121-1125. DOI: 10.1111/tri.12582.
    [18]
    MITSUIKI N, TAMANUKI K, SEI K, et al. Severe neonatal CMV infection complicated with thrombotic microangiopathy successfully treated with ganciclovir[J]. J Infect Chemother, 2017, 23(2): 107-110. DOI: 10.1016/j.jiac.2016.08.007.
    [19]
    THOREAU B, VON TOKARSKI F, BAUVOIS A, et al. Infection in patients with suspected thrombotic microangiopathy based on clinical presentation[J]. Clin J Am Soc Nephrol, 2021, 16(9): 1355-1364. DOI: 10.2215/CJN.17511120.
    [20]
    ARDALAN MR, SHOJA MM, TUBBS RS, et al. Parvovirus B19 microepidemic in renal transplant recipients with thrombotic microangiopathy and allograft vasculitis[J]. Exp Clin Transplant, 2008, 6(2): 137-143.
    [21]
    STEFFEN CJ, KOCH N, ECKARDT KU, et al. Hemophagocytic lymphohistiocytosis and thrombotic microangiopathy after parvovirus B19 infection and renal transplantation: a case report[J]. BMC Nephrol, 2021, 22(1): 337. DOI: 10.1186/s12882-021-02538-0.
    [22]
    WU K, BUDDE K, SCHMIDT D, et al. The inferior impact of antibody-mediated rejection on the clinical outcome of kidney allografts that develop de novo thrombotic microangiopathy[J]. Clin Transplant, 2016, 30(2): 105-117. DOI: 10.1111/ctr.12645.
    [23]
    FARKASH EA, COLVIN RB. Diagnostic challenges in chronic antibody-mediated rejection[J]. Nat Rev Nephrol, 2012, 8(5): 255-257. DOI: 10.1038/nrneph.2012.61.
    [24]
    中华医学会器官移植学分会. 肾移植排斥反应临床诊疗技术规范(2019版)[J]. 器官移植, 2019, 10(5): 505-512. DOI: 10.3969/j.issn.1674-7445.2019.05.008.

    Branch of Organ Transplantation of Chinese Medical Association. Technical specification for the diagnosis and treatment on rejection of renal transplantation (2019 edition)[J]. Organ Transplant, 2019, 10(5): 505-512. DOI: 10.3969/j.issn.1674-7445.2019.05.008.
    [25]
    LOUPY A, HAAS M, ROUFOSSE C, et al. The Banff 2019 kidney meeting report (Ⅰ): updates on and clarification of criteria for T cell- and antibody-mediated rejection[J]. Am J Transplant, 2020, 20(9): 2318-2331. DOI: 10.1111/ajt.15898.
    [26]
    BLASCO M, GUILLÉN-OLMOS E, DIAZ-RICART M, et al. Complement mediated endothelial damage in thrombotic microangiopathies[J]. Front Med (Lausanne), 2022, 9: 811504. DOI: 10.3389/fmed.2022.811504.
    [27]
    NORIS M, REMUZZI G. Terminal complement effectors in atypical hemolytic uremic syndrome: C5a, C5b-9, or a bit of both?[J]. Kidney Int, 2019, 96(1): 13-15. DOI: 10.1016/j.kint.2019.02.038.
    [28]
    TAYLOR CM, MACHIN S, WIGMORE SJ, et al. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom[J]. Br J Haematol, 2010, 148(1): 37-47. DOI: 10.1111/j.1365-2141.2009.07916.x.
    [29]
    LEVI C, FRÉMEAUX-BACCHI V, ZUBER J, et al. Midterm outcomes of 12 renal transplant recipients treated with eculizumab to prevent atypical hemolytic syndrome recurrence[J]. Transplantation, 2017, 101(12): 2924-2930. DOI: 10.1097/TP.0000000000001909.
    [30]
    PRÉVEL R, DELMAS Y, GUILLOTIN V, et al. Complement blockade is a promising therapeutic approach in a subset of critically ill adult patients with complement-mediated hemolytic uremic syndromes[J]. J Clin Med, 2022, 11(3): 790. DOI: 10.3390/jcm11030790.
    [31]
    PALOMO M, BLASCO M, MOLINA P, et al. Complement activation and thrombotic microangiopathies[J]. Clin J Am Soc Nephrol, 2019, 14(12): 1719-1732. DOI: 10.2215/CJN.05830519.
    [32]
    BLASCO M, GUILLÉN E, QUINTANA LF, et al. Thrombotic microangiopathies assessment: mind the complement[J]. Clin Kidney J, 2020, 14(4): 1055-1066. DOI: 10.1093/ckj/sfaa195.
    [33]
    GARG N, RENNKE HG, PAVLAKIS M, et al. De novo thrombotic microangiopathy after kidney transplantation[J]. Transplant Rev (Orlando), 2018, 32(1): 58-68. DOI: 10.1016/j.trre.2017.10.001.
    [34]
    ZHENG L, ZHANG D, CAO W, et al. Synergistic effects of ADAMTS13 deficiency and complement activation in pathogenesis of thrombotic microangiopathy[J]. Blood, 2019, 134(13): 1095-1105. DOI: 10.1182/blood.2019001040.
    [35]
    BUDDE K, PRASHAR R, HALLER H, et al. Conversion from calcineurin inhibitor to belatacept-based maintenance immunosuppression in renal transplant recipients: a randomized phase 3b trial[J]. J Am Soc Nephrol, 2021, 32(12): 3252-3264. DOI: 10.1681/ASN.2021050628.
    [36]
    ASHMAN N, CHAPAGAIN A, DOBBIE H, et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy[J]. Am J Transplant, 2009, 9(2): 424-427. DOI: 10.1111/j.1600-6143.2008.02482.x.
    [37]
    JORDAN SC, AMMERMAN N, CHOI J, et al. The role of novel therapeutic approaches for prevention of allosensitization and antibody-mediated rejection[J]. Am J Transplant, 2020, 20 (Suppl 4): 42-56. DOI: 10.1111/ajt.15913.
    [38]
    SCHWOTZER N, PAGANETTI G, BARCHI M, et al. Upfront use of eculizumab to treat early acute antibody-mediated rejection after kidney allotransplantation and relevance for xenotransplantation[J]. Xenotransplantation, 2020, 27(4): e12630. DOI: 10.1111/xen.12630.
    [39]
    MEEHAN SM, KREMER J, ALI FN, et al. Thrombotic microangiopathy and peritubular capillary C4d expression in renal allograft biopsies[J]. Clin J Am Soc Nephrol, 2011, 6(2): 395-403. DOI: 10.2215/CJN.05870710.
    [40]
    ÖZLÜ SG, GÜLHAN B, AYDOĞ Ö, et al. Could plasma based therapies still be considered in selected cases with atypical hemolytic uremic syndrome?[J]. Turk J Pediatr, 2021, 63(6): 986-993. DOI: 10.24953/turkjped.2021.06.006.
    [41]
    MITTAL A, DIJOO M, AGGARWAL S, et al. Rituximab to abbreviate plasma exchange in anti-CFH (complement factor H) antibody mediated atypical HUS[J]. Iran J Kidney Dis, 2019, 13(2): 134-138.
    [42]
    AIGNER C, BÖHMIG GA, ESKANDARY F, et al. Preemptive plasma therapy prevents atypical hemolytic uremic syndrome relapse in kidney transplant recipients[J]. Eur J Intern Med, 2020, 73: 51-58. DOI: 10.1016/j.ejim.2019.11.007.
    [43]
    ZUBER J, LE QUINTREC M, SBERRO-SOUSSAN R, et al. New insights into postrenal transplant hemolytic uremic syndrome[J]. Nat Rev Nephrol, 2011, 7(1): 23-35. DOI: 10.1038/nrneph.2010.155.
    [44]
    GONZALEZ SUAREZ ML, THONGPRAYOON C, MAO MA, et al. Outcomes of kidney transplant patients with atypical hemolytic uremic syndrome treated with eculizumab: a systematic review and meta-analysis[J]. J Clin Med, 2019, 8(7): 919. DOI: 10.3390/jcm8070919.
    [45]
    LOIRAT C, FAKHOURI F, ARICETA G, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children[J]. Pediatr Nephrol, 2016, 31(1): 15-39. DOI: 10.1007/s00467-015-3076-8.
    [46]
    ÖZÇAKAR ZB, OZALTIN F, GÜLHAN B, et al. Transplantation in pediatric aHUS within the era of eculizumab therapy[J]. Pediatr Transplant, 2021, 25(3): e13914. DOI: 10.1111/petr.13914.
    [47]
    SELLIER-LECLERC AL, FREMEAUX-BACCHI V, DRAGON-DUREY MA, et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome[J]. J Am Soc Nephrol, 2007, 18(8): 2392-2400. DOI: 10.1681/ASN.2006080811.
    [48]
    JALANKO H, PELTONEN S, KOSKINEN A, et al. Successful liver-kidney transplantation in two children with aHUS caused by a mutation in complement factor H[J]. Am J Transplant, 2008, 8(1): 216-221. DOI: 10.1111/j.1600-6143.2007.02029.x.
    [49]
    KIM S, PARK E, MIN SI, et al. Kidney transplantation in patients with atypical hemolytic uremic syndrome due to complement factor H deficiency: impact of liver transplantation[J]. J Korean Med Sci, 2018, 33(1): e4. DOI: 10.3346/jkms.2018.33.e4.
    [50]
    COPPO R, BONAUDO R, PERUZZI RL, et al. Liver transplantation for aHUS: still needed in the eculizumab era?[J]. Pediatr Nephrol, 2016, 31(5): 759-768. DOI: 10.1007/s00467-015-3278-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (633) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return