Volume 13 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhao Bing. Application prospects of organoids in organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004
Citation: Zhao Bing. Application prospects of organoids in organ transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 169-175. doi: 10.3969/j.issn.1674-7445.2022.02.004

Application prospects of organoids in organ transplantation

doi: 10.3969/j.issn.1674-7445.2022.02.004
More Information
  • Corresponding author: Zhao Bing, Email: bingzhao@fudan.edu.cn
  • Received Date: 2021-11-27
    Available Online: 2022-03-18
  • Publish Date: 2022-03-15
  • In recent years, organoid technology has become one of the major technological breakthroughs in biomedical field. As miniature organs constructed by three-dimensional culture of tissue stem cells in vitro, organoids are highly consistent with the source tissues in terms of tissue structures, cell types and functions, which serve as an ideal model for biomedical basic research, drug research and development and clinical precision medicine, and show important potential value in regenerative medicine. Organ transplantation is one of the most effective approaches to treat organ failure. However, the source of donor organs is currently limited, which could not meet the patients' needs. Identifying suitable graft substitutes is the key to breaking through the predicament. Organoids could be derived from the autologous tissues of patients. Multiple studies have demonstrated that organoids possess potent transplantation and repairing capabilities and may effectively avert the risk of immune rejection and tumorigenicity, etc. In this article, the development process and main application directions of organoid technology were summarized, and the application prospect and challenges of organoids in organ transplantation were reviewed and predicted.

     

  • loading
  • [1]
    SATO T, VRIES RG, SNIPPERT HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.
    [2]
    SATO T, STANGE DE, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772. DOI: 10.1053/j.gastro.2011.07.050.
    [3]
    ROSSI G, MANFRIN A, LUTOLF MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687. DOI: 10.1038/s41576-018-0051-9.
    [4]
    XU H, LYU X, YI M, et al. Organoid technology and applications in cancer research[J]. J Hematol Oncol, 2018, 11(1): 116. DOI: 10.1186/s13045-018-0662-9.
    [5]
    KIM J, KOO BK, KNOBLICH JA. Human organoids: model systems for human biology and medicine[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 571-584. DOI: 10.1038/s41580-020-0259-3.
    [6]
    KRETZSCHMAR K, CLEVERS H. Organoids: modeling development and the stem cell niche in a dish[J]. Dev Cell, 2016, 38(6): 590-600. DOI: 10.1016/j.devcel.2016.08.014.
    [7]
    DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends Mol Med, 2017, 23(5): 393-410. DOI: 10.1016/j.molmed.2017.02.007.
    [8]
    NUGRAHA B, BUONO MF, VON BOEHMER L, et al. Human cardiac organoids for disease modeling[J]. Clin Pharmacol Ther, 2019, 105(1): 79-85. DOI: 10.1002/cpt.1286.
    [9]
    LIU F, HUANG J, ZHANG L, et al. Advances in cerebral organoid systems and their application in disease modeling[J]. Neuroscience, 2019, 399: 28-38. DOI: 10.1016/j.neuroscience.2018.12.013.
    [10]
    DRIEHUIS E, KRETZSCHMAR K, CLEVERS H. Establishment of patient-derived cancer organoids for drug-screening applications[J]. Nat Protoc, 2020, 15(10): 3380-3409. DOI: 10.1038/s41596-020-0379-4.
    [11]
    BORETTO M, MAENHOUDT N, LUO X, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening[J]. Nat Cell Biol, 2019, 21(8): 1041-1051. DOI: 10.1038/s41556-019-0360-z.
    [12]
    KOPPER O, DE WITTE CJ, LÕHMUSSAAR K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5): 838-849. DOI: 10.1038/s41591-019-0422-6.
    [13]
    XIA X, LI F, HE J, et al. Organoid technology in cancer precision medicine[J]. Cancer Lett, 2019, 457: 20-27. DOI: 10.1016/j.canlet.2019.04.039.
    [14]
    XU R, ZHOU X, WANG S, et al. Tumor organoid models in precision medicine and investigating cancer-stromal interactions[J]. Pharmacol Ther, 2021, 218: 107668. DOI: 10.1016/j.pharmthera.2020.107668.
    [15]
    SERRA D, MAYR U, BONI A, et al. Self-organization and symmetry breaking in intestinal organoid development[J]. Nature, 2019, 569(7754): 66-72. DOI: 10.1038/s41586-019-1146-y.
    [16]
    MARSHALL JJ, MASON JO. Mouse vs man: organoid models of brain development & disease[J]. Brain Res, 2019, 1724: 146427. DOI: 10.1016/j.brainres.2019.146427.
    [17]
    NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. DOI: 10.1038/s41586-020-2724-8.
    [18]
    NIGRO G, HANSON M, FEVRE C, et al. Intestinal organoids as a novel tool to study microbes-epithelium interactions[J]. Methods Mol Biol, 2019, 1576: 183-194. DOI: 10.1007/7651_2016_12.
    [19]
    ZHU Z, MESCI P, BERNATCHEZ JA, et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 axis[J]. Cell Stem Cell, 2020, 26(2): 187-204. DOI: 10.1016/j.stem.2019.11.016.
    [20]
    MELLIN R, BODDEY JA. Organoids for liver stage malaria research[J]. Trends Parasitol, 2020, 36(2): 158-169. DOI: 10.1016/j.pt.2019.12.003.
    [21]
    SAKIB S, VOIGT A, GOLDSMITH T, et al. Three-dimensional testicular organoids as novel in vitro models of testicular biology and toxicology[J]. Environ Epigenet, 2019, 5(3): dvz011. DOI: 10.1093/eep/dvz011.
    [22]
    HEDRICH WD, PANZICA-KELLY JM, CHEN SJ, et al. Development and characterization of rat duodenal organoids for ADME and toxicology applications[J]. Toxicology, 2020, 446: 152614. DOI: 10.1016/j.tox.2020.152614.
    [23]
    MAZZARA PG, MUGGEO S, LUONI M, et al. Frataxin gene editing rescues Friedreich's ataxia pathology in dorsal root ganglia organoid-derived sensory neurons[J]. Nat Commun, 2020, 11(1): 4178. DOI: 10.1038/s41467-020-17954-3.
    [24]
    HENDRIKS D, ARTEGIANI B, HU H, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nat Protoc, 2021, 16(1): 182-217. DOI: 10.1038/s41596-020-00411-2.
    [25]
    ARTEGIANI B, HENDRIKS D, BEUMER J, et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing[J]. Nat Cell Biol, 2020, 22(3): 321-331. DOI: 10.1038/s41556-020-0472-5.
    [26]
    NAKAMURA T, SATO T. Advancing intestinal organoid technology toward regenerative medicine[J]. Cell Mol Gastroenterol Hepatol, 2017, 5(1): 51-60. DOI: 10.1016/j.jcmgh.2017.10.006.
    [27]
    HEO I, DUTTA D, SCHAEFER DA, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids[J]. Nat Microbiol, 2018, 3(7): 814-823. DOI: 10.1038/s41564-018-0177-8.
    [28]
    ZHAO B, NI C, GAO R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids[J]. Protein Cell, 2020, 11(10): 771-775. DOI: 10.1007/s13238-020-00718-6.
    [29]
    LOU YR, LEUNG AW. Next generation organoids for biomedical research and applications[J]. Biotechnol Adv, 2018, 36(1): 132-149. DOI: 10.1016/j.biotechadv.2017.10.005.
    [30]
    SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15: 211-234. DOI: 10.1146/annurev-pathmechdis-012419-032611.
    [31]
    DROST J, CLEVERS H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7): 407-418. DOI: 10.1038/s41568-018-0007-6.
    [32]
    ROERINK SF, SASAKI N, LEE-SIX H, et al. Intra-tumour diversification in colorectal cancer at the single-cell level[J]. Nature. 2018, 556(7702): 457-462. DOI: 10.1038/s41586-018-0024-3.
    [33]
    YUI S, NAKAMURA T, SATO T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell[J]. Nat Med, 2012, 18(4): 618-623. DOI: 10.1038/nm.2695.
    [34]
    HU H, GEHART H, ARTEGIANI B, et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids[J]. Cell, 2018, 175(6): 1591-1606. DOI: 10.1016/j.cell.2018.11.013.
    [35]
    SAMPAZIOTIS F, JUSTIN AW, TYSOE OC, et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids[J]. Nat Med, 2017, 23(8): 954-963. DOI: 10.1038/nm.4360.
    [36]
    NIKOLIĆ MZ, CARITG O, JENG Q, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids[J]. Elife, 2017, 6: e26575. DOI: 10.7554/eLife.26575.
    [37]
    YOSHIHARA E, O'CONNOR C, GASSER E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611. DOI: 10.1038/s41586-020-2631-z.
    [38]
    MANSOUR AA, GONÇALVES JT, BLOYD CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5): 432-441. DOI: 10.1038/nbt.4127.
    [39]
    LEE J, RABBANI CC, GAO H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404. DOI: 10.1038/s41586-020-2352-3.
    [40]
    BREDENOORD AL, CLEVERS H, KNOBLICH JA. Human tissues in a dish: the research and ethical implications of organoid technology[J]. Science, 2017, 355(6322): eaaf9414. DOI: 10.1126/science.aaf9414.
    [41]
    LEBRETON F, LAVALLARD V, BELLOFATTO K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 2019, 10(1): 4491. DOI: 10.1038/s41467-019-12472-3.
    [42]
    SUGIMOTO S, KOBAYASHI E, FUJII M, et al. An organoid-based organ-repurposing approach to treat short bowel syndrome[J]. Nature, 2021, 592(7852): 99-104. DOI: 10.1038/s41586-021-03247-2.
    [43]
    SAMPAZIOTIS F, MURARO D, TYSOE OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver[J]. Science, 2021, 371(6531): 839-846. DOI: 10.1126/science.aaz6964.
    [44]
    WANG X, NI C, JIANG N, et al. Generation of liver bipotential organoids with a small-molecule cocktail[J]. J Mol Cell Biol, 2020, 12(8): 618-629. DOI: 10.1093/jmcb/mjaa010.
    [45]
    GIOBBE GG, CROWLEY C, LUNI C, et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture[J]. Nat Commun, 2019, 10(1): 5658. DOI: 10.1038/s41467-019-13605-4.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1423) PDF downloads(255) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return