Volume 13 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Huang Wenhua. Frontier hotspots and research progress on 3D bioprinting in organ reconstruction[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003
Citation: Huang Wenhua. Frontier hotspots and research progress on 3D bioprinting in organ reconstruction[J]. ORGAN TRANSPLANTATION, 2022, 13(2): 161-168. doi: 10.3969/j.issn.1674-7445.2022.02.003

Frontier hotspots and research progress on 3D bioprinting in organ reconstruction

doi: 10.3969/j.issn.1674-7445.2022.02.003
More Information
  • Corresponding author: Huang Wenhua, Email: huangwenhua2009@139.com
  • Received Date: 2021-12-24
    Available Online: 2022-03-18
  • Publish Date: 2022-03-15
  • 3D bioprinting is an advanced manufacturing technology that utilizes biomaterials and bioactive components to manufacture artificial tissues and organs. It has been widely applied in multiple medical fields and possesses outstanding advantages in organ reconstruction. In recent years, 3D bioprinted organs have made an array of groundbreaking achievements. Nevertheless, it is still in the exploratory stage of research and development and still has bottleneck problems, which can not be applied in organ transplantation in vivo. In this article, the application of 3D printing technology in medicine, characteristics of 3D bioprinting technology, research hotspots and difficulties in bionic structure, functional reconstruction and immune response of 3D bioprinted organs, and the latest research progress on 3D bioprinting technology were illustrated, and the application prospect of 3D bioprinting technology in the field of organ reconstruction was elucidated, aiming to provide novel ideas for the research and clinical application of organ reconstruction and artificial organ reconstruction, and promote the development of organ transplantation and individualized medicine.

     

  • loading
  • [1]
    JORGENSEN AM, YOO JJ, ATALA A. Solid organ bioprinting: strategies to achieve organ function[J]. Chem Rev, 2020, 120(19): 11093-11127. DOI: 10.1021/acs.chemrev.0c00145.
    [2]
    JIANG W, MEI H, ZHAO S. Applications of 3D bio-printing in tissue engineering and biomedicine[J]. J Biomed Nanotechnol, 2021, 17(6): 989-1006. DOI: 10.1166/jbn.2021.3078.
    [3]
    PARIHAR A, PANDITA V, KUMAR A, et al. 3D printing: advancement in biogenerative engineering to combat shortage of organs and bioapplicable materials[J]. Regen Eng Transl Med, 2021, DOI: 10.1007/s40883-021-00219-w [Epub ahead of print].
    [4]
    POWELL SK, CRUZ RLJ, ROSS MT, et al. Past, present, and future of soft-tissue prosthetics: advanced polymers and advanced manufacturing[J]. Adv Mater, 2020, 32(42): e2001122. DOI: 10.1002/adma.202001122.
    [5]
    ZHANG J, WEHRLE E, RUBERT M, et al. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors[J]. Int J Mol Sci, 2021, 22(8): 3971. DOI: 10.3390/ijms22083971.
    [6]
    ZASZCZYŃSKA A, MOCZULSKA-HELJAK M, GRADYS A, et al. Advances in 3D printing for tissue engineering[J]. Materials (Basel), 2021, 14(12): 3149. DOI: 10.3390/ma14123149.
    [7]
    KAFLE A, LUIS E, SILWAL R, et al. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA)[J]. Polymers (Basel), 2021, 13(18): 3101. DOI: 10.3390/polym13183101.
    [8]
    GRAJEWSKI M, HERMANN M, OLESCHUK RD, et al. Leveraging 3D printing to enhance mass spectrometry: a review[J]. Anal Chim Acta, 2021, 1166: 338332. DOI: 10.1016/j.aca.2021.338332.
    [9]
    PUTRA NE, MIRZAALI MJ, APACHITEI I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution[J]. Acta Biomater, 2020, 109: 1-20. DOI: 10.1016/j.actbio.2020.03.037.
    [10]
    李金泰, 蓝升, 刘毅. 3D打印干细胞技术用于组织器官重建的现状与思考[J]. 器官移植, 2017, 8(4): 267-270. DOI: 10.3969/j.issn.1674-7445.2017.04.003.

    LI JT, LAN S, LIU Y. Current status and thinking of 3D printing stem cell technology for tissue and organ reconstruction[J]. Organ Transplant, 2017, 8(4): 267-270. DOI: 10.3969/j.issn.1674-7445.2017.04.003.
    [11]
    PEDDE RD, MIRANI B, NAVAEI A, et al. Emerging biofabrication strategies for engineering complex tissue constructs[J]. Adv Mater, 2017, 29(19): 1-27. DOI: 10.1002/adma.201606061.
    [12]
    RAVANBAKHSH H, KARAMZADEH V, BAO G, et al. Emerging technologies in multi-material bioprinting[J]. Adv Mater, 2021, DOI: 10.1002/adma.202104730[Epub ahead of print].
    [13]
    ZHOU G, JIANG H, YIN Z, et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction[J]. EBioMedicine, 2018, 28: 287-302. DOI: 10.1016/j.ebiom.2018.01.011.
    [14]
    NOOR N, SHAPIRA A, EDRI R, et al. 3D printing of personalized thick and perfusable cardiac patches and hearts[J]. Adv Sci (Weinh), 2019, 6(11): 1900344. DOI: 10.1002/advs.201900344.
    [15]
    JALLERAT Q, FEINBERG AW. Extracellular matrix structure and composition in the early four-chambered embryonic heart[J]. Cells, 2020, 9(2): 285. DOI: 10.3390/cells9020285.
    [16]
    GRIGORYAN B, PAULSEN SJ, CORBETT DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464. DOI: 10.1126/science.aav9750.
    [17]
    RAMASWAMY A, BRODSKY NN, SUMIDA TS, et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children[J]. Immunity, 2021, 54(5): 1083-1095. DOI: 10.1016/j.immuni.2021.04.003.
    [18]
    ALIMI OA, MEIJBOOM R. Current and future trends of additive manufacturing for chemistry applications: a review[J]. J Mater Sci, 2021: 1-27. DOI: 10.1007/s10853-021-06362-7.
    [19]
    ZADPOOR AA. Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials[J]. Int J Mol Sci, 2017, 18(8): 1607. DOI: 10.3390/ijms18081607.
    [20]
    ANTMEN E, VRANA NE, HASIRCI V. The role of biomaterials and scaffolds in immune responses in regenerative medicine: macrophage phenotype modulation by biomaterial properties and scaffold architectures[J]. Biomater Sci, 2021, 9(24): 8090-8110. DOI: 10.1039/d1bm00840d.
    [21]
    AMEKYEH H, TARLOCHAN F, BILLA N. Practicality of 3D printed personalized medicines in therapeutics[J]. Front Pharmacol, 2021, 12: 646836. DOI: 10.3389/fphar.2021.646836.
    [22]
    GUILLOTIN B, SOUQUET A, CATROS S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization[J]. Biomaterials, 2010, 31(28): 7250-7256. DOI: 10.1016/j.biomaterials.2010.05.055.
    [23]
    HULL SM, BRUNEL LG, HEILSHORN SC. 3D bioprinting of cell-laden hydrogels for improved biological functionality[J]. Adv Mater, 2021: e2103691. DOI: 10.1002/adma.202103691.
    [24]
    CARVALHO V, GONÇALVES I, LAGE T, et al. 3D printing techniques and their applications to organ-on-a-chip platforms: a systematic review[J]. Sensors (Basel), 2021, 21(9): 3304. DOI: 10.3390/s21093304.
    [25]
    ZOHAR B, BLINDER Y, EPSHTEIN M, et al. Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue[J]. Commun Biol, 2019, 2: 158. DOI: 10.1038/s42003-019-0400-z.
    [26]
    YAMAMOTO K, YAMAOKA N, IMAIZUMI Y, et al. Development of a human neuromuscular tissue-on-a-chip model on a 24-well-plate-format compartmentalized microfluidic device[J]. Lab Chip, 2021, 21(10): 1897-1907. DOI: 10.1039/d1lc00048a.
    [27]
    LIND JU, BUSBEE TA, VALENTINE AD, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing[J]. Nat Mater, 2017, 16(3): 303-308. DOI: 10.1038/nmat4782.
    [28]
    CHEN X, LIAN T, ZHANG B, et al. Design and mechanical compatibility of nylon bionic cancellous bone fabricated by selective laser sintering[J]. Materials (Basel), 2021, 14(8): 1965. DOI: 10.3390/ma14081965.
    [29]
    PAGAC M, HAJNYS J, MA QP, et al. A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing[J]. Polymers (Basel), 2021, 13(4): 598. DOI: 10.3390/polym13040598.
    [30]
    ZHOU X, REN L, LIU Q, et al. Advances in field-assisted 3D printing of bio-inspired composites: from bioprototyping to manufacturing[J]. Macromol Biosci, 2021: e2100332. DOI: 10.1002/mabi.202100332.
    [31]
    MAO M, LIANG H, HE J, et al. Coaxial electrohydrodynamic bioprinting of pre-vascularized cell-laden constructs for tissue engineering[J]. Int J Bioprint, 2021, 7(3): 362. DOI: 10.18063/ijb.v7i3.362.
    [32]
    WU Y, ZHANG Y, YU Y, et al. 3D coaxial bioprinting of vasculature[J]. Methods Mol Biol, 2020, 2140: 171-181. DOI: 10.1007/978-1-0716-0520-2_11.
    [33]
    LI C, HAN X, MA Z, et al. Engineered customizable microvessels for progressive vascularization in large regenerative implants[J]. Adv Healthc Mater, 2021: e2101836. DOI: 10.1002/adhm.202101836.
    [34]
    DE MOOR L, SMET J, PLOVYT M, et al. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin[J]. Biofabrication, 2021, 13(4). DOI: 10.1088/1758-5090/ac24de.
    [35]
    ZHONG C, XIE HY, ZHOU L, et al. Human hepatocytes loaded in 3D bioprinting generate mini-liver[J]. Hepatobiliary Pancreat Dis Int, 2016, 15(5): 512-518. DOI: 10.1016/s1499-3872(16)60119-4.
    [36]
    NIKOLAEV M, MITROFANOVA O, BROGUIERE N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis[J]. Nature, 2020, 585(7826): 574-578. DOI: 10.1038/s41586-020-2724-8.
    [37]
    马军, 贺强, 李先亮. 器官移植受者免疫状态监测最新进展[J]. 器官移植, 2019, 10(3): 333-335, 338. DOI: 10.3969/j.issn.1674-7445.2019.03.019.

    MA J, HE Q, LI XL. The latest progress on monitoring the immune status of organ transplant recipients[J]. Organ Transplant, 2019, 10(3): 333-335, 338. DOI: 10.3969/j.issn.1674-7445.2019.03.019.
    [38]
    肖漓, 解立新, 石炳毅. 肺移植免疫学相关基础与临床研究进展[J]. 器官移植, 2021, 12(6): 637-642. DOI: 10.3969/j.issn.1674-7445.2021.06.001.

    XIAO L, XIE LX, SHI BY. Progress on basic and clinical research of immunology in lung transplantation[J]. Organ Transplant, 2021, 12(6): 637-642. DOI: 10.3969/j.issn.1674-7445.2021.06.001.
    [39]
    EDGAR L, PU T, PORTER B, et al. Regenerative medicine, organ bioengineering and transplantation[J]. Br J Surg, 2020, 107(7): 793-800. DOI: 10.1002/bjs.11686.
    [40]
    KUNG VL, SANDHU R, HAAS M, et al. Chronic active T cell-mediated rejection is variably responsive to immunosuppressive therapy[J]. Kidney Int, 2021, 100(2): 391-400. DOI: 10.1016/j.kint.2021.03.027.
    [41]
    MA S, FENG X, LIU F, et al. The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles[J]. Eng Life Sci, 2021, 21(10): 709-720. DOI: 10.1002/elsc.202100040.
    [42]
    CALDWELL AS, RAO VV, GOLDEN AC, et al. Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization[J]. Bioeng Transl Med, 2021, 6(2): e10217. DOI: 10.1002/btm2.10217.
    [43]
    LIU W, LIANG L, LIU B, et al. The response of macrophages and their osteogenic potential modulated by micro/nano-structured Ti surfaces[J]. Colloids Surf B Biointerfaces, 2021, 205: 111848. DOI: 10.1016/j.colsurfb.2021.111848.
    [44]
    徐俊明, 周林, 贺强. 树突状细胞在器官移植免疫耐受中的研究进展[J]. 器官移植, 2020, 11(5): 629-634. DOI: 10.3969/j.issn.1674-7445.2020.05.017.

    XU JM, ZHOU L, HE Q. Research progress on dendritic cell in immune tolerance of organ transplantation[J]. Organ Transplant, 2020, 11(5): 629-634. DOI: 10.3969/j.issn.1674-7445.2020.05.017.
    [45]
    袁顺, 王志维. 髓源性抑制细胞与移植免疫耐受研究进展[J]. 器官移植, 2020, 11(4): 435-442. DOI: 10.3969/j.issn.1674-7445.2020.04.002.

    YUAN S, WANG ZW. Research progress on myeloid-derived suppressorcell and transplantation immune tolerance[J]. Organ Transplant, 2020, 11(4): 435-442. DOI: 10.3969/j.issn.1674-7445.2020.04.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (866) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return