Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhang Hanshu, Song Cangsang, Zhang Yang, et al. Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019
Citation: Zhang Hanshu, Song Cangsang, Zhang Yang, et al. Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 496-502. doi: 10.3969/j.issn.1674-7445.2021.04.019

Research progress on the gene polymorphism of tacrolimus transporter in organ transplantation

doi: 10.3969/j.issn.1674-7445.2021.04.019
More Information
  • Corresponding author: Song Cangsang, Email: songcs163@163.com
  • Received Date: 2021-04-24
    Available Online: 2021-07-13
  • Publish Date: 2021-07-15
  • Tacrolimus (Tac) is a commonly used immunosuppressant after organ transplantation, which has high immunosuppressive efficacy. However, the pharmacokinetics of Tac significantly differ among individuals, and gene polymorphism is the main influencing factor. In recent years, the gene polymorphism of drug transporter has become a novel research hotspot. Nevertheless, the effect of the gene polymorphism of transporter on Tac pharmacokinetics remains controversial. Consequently, the correlation between the gene polymorphism of transporter and Tac blood concentration plays a significant role in guiding Tac-based individualized immunosuppressive therapy. In this article, the research progresses on the gene polymorphism of adenosine triphosphate-binding cassette (ABC) transporter and solute carrier (SLC) transporter in organ transplantation was reviewed. The correlation between the gene polymorphism of transporter and Tac blood concentration was summarized, aiming to provide reference for Tac-based individualized therapy.

     

  • loading
  • [1]
    COZZI E, COLPO A, DE SILVESTRO G. The mechanisms of rejection in solid organ transplantation[J]. Transfus Apher Sci, 2017, 56(4): 498-505. DOI: 10.1016/j.transci.2017.07.005.
    [2]
    LOUPY A, LEFAUCHEUR C. Antibody-mediated rejection of solid-organ allografts[J]. N Engl J Med, 2018, 379(12): 1150-1160. DOI: 10.1056/NEJMra1802677.
    [3]
    ZHANG X, LIN G, TAN L, et al. Current progress of tacrolimus dosing in solid organ transplant recipients: pharmacogenetic considerations[J]. Biomed Pharmacother, 2018, 102: 107-114. DOI: 10.1016/j.biopha.2018.03.054.
    [4]
    SCHUTTE-NUTGEN K, THOLKING G, SUWELACK B, et al. Tacrolimus - pharmacokinetic considerations for clinicians[J]. Curr Drug Metab, 2018, 19(4): 342-350. DOI: 10.2174/1389200219666180101104159.
    [5]
    OBERBAUER R, BESTARD O, FURIAN L, et al. Optimization of tacrolimus in kidney transplantation: new pharmacokinetic perspectives[J]. Transplant Rev (Orlando), 2020, 34(2): 100531. DOI: 10.1016/j.trre.2020.100531.
    [6]
    BRUNET M, VAN GELDER T, ÅSBERG A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. DOI: 10.1097/FTD.0000000000000640.
    [7]
    Pharmgkb. Clinical annotation for rs776746 related to tacrolimus- dosage/pk (1A)[EB/OL]. [2018-04-24]. https://www.pharmgkb.org/chemical/PA451578/clinicalAnnotation/981203719.
    [8]
    陈晨, 张晏洁, 贺小露, 等. 他克莫司个体化用药指南解读[J]. 医学研究生学报, 2017, 30(4): 342-347. DOI: 10.16571/j.cnki.1008-8199.2017.04.002.

    CHEN C, ZHANG YJ, HE XL, et al. Interpretation of tacrolimus guidelines for individualized medication[J]. J Med Postgrad, 2017, 30(4): 342-347. DOI: 10.16571/j.cnki.1008-8199.2017.04.002.
    [9]
    TRON C, ALLARD M, PETITCOLLIN A, et al. Tacrolimus diffusion across the peripheral mononuclear blood cell membrane: impact of drug transporters[J]. Fundam Clin Pharmacol, 2019, 33(1): 113-121. DOI: 10.1111/fcp.12412.
    [10]
    LIU X. Transporter-mediated drug-drug interactions and their significance[J]. Adv Exp Med Biol, 2019, 1141: 241-291. DOI: 10.1007/978-981-13-7647-4_5.
    [11]
    CHU X, LIAO M, SHEN H, et al. Clinical probes and endogenous biomarkers as substrates for transporter drug-drug interaction evaluation: perspectives from the International Transporter Consortium[J]. Clin Pharmacol Ther, 2018, 104(5): 836-864. DOI: 10.1002/cpt.1216.
    [12]
    WILLIAMSON B, RILEY RJ. Hepatic transporter drug-drug interactions: an evaluation of approaches and methodologies[J]. Expert Opin Drug Metab Toxicol, 2017, 13(12): 1237-1250. DOI: 10.1080/17425255.2017.1404028.
    [13]
    NIGAM SK. What do drug transporters really do?[J]. Nat Rev Drug Discov, 2015, 14(1): 29-44. DOI: 10.1038/nrd4461.
    [14]
    LEE W, HA JM, SUGIYAMA Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides[J]. J Biol Chem, 2020, 295(50): 17349-17364. DOI: 10.1074/jbc.REV120.009132.
    [15]
    DARNEY K, TURCO L, BURATTI FM, et al. Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment[J]. Food Chem Toxicol, 2020, 140: 111305. DOI: 10.1016/j.fct.2020.111305.
    [16]
    YU M, LIU M, ZHANG W, et al. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation[J]. Curr Drug Metab, 2018, 19(6): 513-522. DOI: 10.2174/1389200219666180129151948.
    [17]
    WANG R, SUN X, DENG YS, et al. Effects of MDR1 1236C > T-2677G > T-3435C > T polymorphisms on the intracellular accumulation of tacrolimus, cyclosporine A, sirolimus and everolimus[J]. Xenobiotica, 2019, 49(11): 1373-1378. DOI: 10.1080/00498254.2018.1563732.
    [18]
    MA G, HUANG X, BI Y, et al. Association study between ABCB1, ABCB6 and ABCG1 polymorphisms and major depressive disorder in the Chinese Han population[J]. Psychiatry Res, 2018, 270: 1170-1171. DOI: 10.1016/j.psychres.2018.05.045.
    [19]
    GENVIGIR FD, SALGADO PC, FELIPE CR, et al. Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients[J]. Pharmacogenet Genomics, 2016, 26(10): 462-472. DOI: 10.1097/FPC.0000000000000237.
    [20]
    PRASAD N, JAISWAL A, BEHERA MR, et al. Melding pharmacogenomic effect of MDR1 and CYP3A5 gene polymorphism on tacrolimus dosing in renal transplant recipients in Northern India[J]. Kidney Int Rep, 2019, 5(1): 28-38. DOI: 10.1016/j.ekir.2019.09.013.
    [21]
    胡楠, 汤雨帆, 钱卿, 等. CYP3A5和ABCB1基因多态性对肾移植患者术后初期他克莫司剂量、浓度及肾功能的影响[J]. 中南药学, 2019, 17(4): 489-494. DOI: 10.7539/j.issn.1672-2981.2019.04.002.

    HU N, TANG YF, QIAN Q, et al. Effect of CYP3A5 and ABCB1 polymorphism on dosage and concentration of tacrolimus and renal function in renal transplant recipients at early postoperative period[J]. Central South Pharm, 2019, 17(4): 489-494. DOI: 10.7539/j.issn.1672-2981.2019.04.002.
    [22]
    RIEGERSPERGER M, PLISCHKE M, STEINHAUSER C, et al. The effect of ABCB1 polymorphisms on serial tacrolimus concentrations in stable Austrian long-term kidney transplant recipients[J]. Clin Lab, 2016, 62(10): 1965-1972. DOI: 10.7754/Clin.Lab.2016.160221.
    [23]
    SU L, YIN L, YANG J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews[J]. Medicine (Baltimore), 2019, 98(26): e16113. DOI: 10.1097/MD.0000000000016113.
    [24]
    刘璐, 宋沧桑, 张阳, 等. MDR1 C3435T基因多态性与肾移植患者他克莫司血药浓度关系的Meta分析[J]. 中国医院药学杂志, 2018, 38(23): 2440-2446. DOI: 10.13286/j.cnki.chinhosppharmacyj.2018.23.12.

    LIU L, SONG CS, ZHANG Y, et al. A Meta-analysis of correlation between MDR1 C3435T genotypes and blood concentration of tacrolimus in renal transplant recipients[J]. Chin J Hosp Pharm, 2018, 38(23): 2440-2446. DOI: 10.13286/j.cnki.chinhosppharmacyj.2018.23.12.
    [25]
    PENG W, LIN Y, ZHANG H, et al. Effect of ABCB1 3435C > T genetic polymorphism on pharmacokinetic variables of tacrolimus in adult renal transplant recipients: a systematic review and Meta-analysis[J]. Clin Ther, 2020, 42(10): 2049-2065. DOI: 10.1016/j.clinthera.2020.07.016.
    [26]
    NAUSHAD SM, PAVANI A, RUPASREE Y, et al. Recipient ABCB1, donor and recipient CYP3A5 genotypes influence tacrolimus pharmacokinetics in liver transplant cases[J]. Pharmacol Rep, 2019, 71(3): 385-392. DOI: 10.1016/j.pharep.2019.01.006.
    [27]
    CAPRON A, MOURAD M, DE MEYER M, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation[J]. Pharmacogenomics, 2010, 11(5): 703-714. DOI: 10.2217/pgs.10.43.
    [28]
    HAN SS, YANG SH, KIM MC, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function[J]. PLoS One, 2016, 11(4): e0153491. DOI: 10.1371/journal.pone.0153491.
    [29]
    NOLL BD, COLLER JK, SOMOGYI AA, et al. Validation of an LC-MS/MS method to measure tacrolimus in rat kidney and liver tissue and its application to human kidney biopsies[J]. Ther Drug Monit, 2013, 35(5): 617-623. DOI: 10.1097/FTD.0b013e31828e8162.
    [30]
    OGASAWARA K, CHITNIS SD, GOHH RY, et al. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients[J]. Clin Pharmacokinet, 2013, 52(9): 751-762. DOI: 10.1007/s40262-013-0069-2.
    [31]
    GENVIGIR FDV, NISHIKAWA AM, FELIPE CR, et al. Influence of ABCC2, CYP2C8, and CYP2J2 polymorphisms on tacrolimus and mycophenolate sodium-based treatment in Brazilian kidney transplant recipients[J]. Pharmacotherapy, 2017, 37(5): 535-545. DOI: 10.1002/phar.1928.
    [32]
    PULK RA, SCHLADT DS, OETTING WS, et al. Multigene predictors of tacrolimus exposure in kidney transplant recipients[J]. Pharmacogenomics, 2015, 16(8): 841-854. DOI: 10.2217/pgs.15.42.
    [33]
    GENVIGIR FDV, CAMPOS-SALAZAR AB, FELIPE CR, et al. CYP3A5*3 and CYP2C8*3 variants influence exposure and clinical outcomes of tacrolimus-based therapy[J]. Pharmacogenomics, 2020, 21(1): 7-21. DOI: 10.2217/pgs-2019-0120.
    [34]
    LI TT, AN JX, XU JY, et al. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver[J]. World J Clin Cases, 2019, 7(23): 3915-3933. DOI: 10.12998/wjcc.v7.i23.3915.
    [35]
    OSWALD S. Organic anion transporting polypeptide (OATP) transporter expression, localization and function in the human intestine[J]. Pharmacol Ther, 2019, 195: 39-53. DOI: 10.1016/j.pharmthera.2018.10.007.
    [36]
    HSUEH CH, YOSHIDA K, ZHAO P, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3[J]. Mol Pharm, 2016, 13(9): 3130-3140. DOI: 10.1021/acs.molpharmaceut.6b00332.
    [37]
    PALLIO G, IRRERA N, BITTO A, et al. Failure of achieving tacrolimus target blood concentration might be avoided by a wide genotyping of transplanted patients: evidence from a retrospective study[J]. J Pers Med, 2020, 10(2): 47. DOI: 10.3390/jpm10020047.
    [38]
    刘澍, 陈荣新, 李军, 等. SLCO1B1基因多态性与肾移植患者他克莫司浓度相关性的研究[J]. 药学学报, 2016, 51(8): 1240-1244. DOI: 10.16438/j.0513-4870.2016-0027.

    LIU P, CHEN RX, LI J, et al. Associations of SLCO1B1 polymorphisms with tacrolimus concentrations in Chinese renal transplant recipients[J]. Acta Pharm Sin, 2016, 51(8): 1240-1244. DOI: 10.16438/j.0513-4870.2016-0027.
    [39]
    WU Y, FANG F, WANG Z, et al. The influence of recipient SLCO1B1 rs2291075 polymorphism on tacrolimus dose-corrected trough concentration in the early period after liver transplantation[J]. Eur J Clin Pharmacol, 2021, 77(6): 859-867. DOI: 10.1007/s00228-020-03058-w.
    [40]
    WANG J, HUANG L, GAO P, et al. Diltiazem on tacrolimus exposure and dose sparing in Chinese pediatric primary nephrotic syndrome: impact of CYP3A4, CYP3A5, ABCB1, and SLCO1B3 polymorphisms[J]. Eur J Clin Pharmacol, 2021, 77(1): 71-77. DOI: 10.1007/s00228-020-02977-y.
    [41]
    ALAM K, CROWE A, WANG X, et al. Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: an updated review in the context of OATP-mediated drug-drug interactions[J]. Int J Mol Sci, 2018, 19(3): 855. DOI: 10.3390/ijms19030855.
    [42]
    BOIVIN AA, CARDINAL H, BARAMA A, et al. Influence of SLCO1B3 genetic variations on tacrolimus pharmacokinetics in renal transplant recipients[J]. Drug Metab Pharmacokinet, 2013, 28(3): 274-277. DOI: 10.2133/dmpk.dmpk-12-sh-093.
    [43]
    王翔, 余爱荣, 辛华雯. 相关基因多态性与肾移植术后他克莫司疗效的关系研究进展[J]. 中国药师, 2020, 23(5): 938-941. DOI: 10.3969/j.issn.1008-049X.2020.05.037.

    WANG X, YU AR, XIN HW. Advances in the relationship between related gene polymorphisms and efficacy of tacrolimus after renal transplantation[J]. Chin Pharm, 2020, 23(5): 938-941. DOI: 10.3969/j.issn.1008-049X.2020.05.037.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (371) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return