Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Shao Kun, Chen Bing, Zhou Peijun. Research progress on determination of intracellular concentration of immunosuppressant[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018
Citation: Shao Kun, Chen Bing, Zhou Peijun. Research progress on determination of intracellular concentration of immunosuppressant[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 489-495. doi: 10.3969/j.issn.1674-7445.2021.04.018

Research progress on determination of intracellular concentration of immunosuppressant

doi: 10.3969/j.issn.1674-7445.2021.04.018
More Information
  • Corresponding author: Zhou Peijun, Email: peijunzhou@yahoo.com
  • Received Date: 2021-04-23
    Available Online: 2021-07-13
  • Publish Date: 2021-07-15
  • Currently, extracellular concentration measurement is the major approach of therapeutic drug monitoring (TDM) of clinical immunosuppressant in organ transplantation. Its correlation with the efficacy of immunosuppressant remains elusive. With widespread application of liquid chromatography, the detection technology of intracellular concentration of immunosuppressant is gradually mature. Theoretically, it may more accurately reflect the efficacy of immunosuppressant due to that the level of drug exposure in target cells can be directly measured. In this article, the history and present situation of the determination of intracellular concentration of immunosuppressant were summarized, and the association between the determination methods of intracellular concentration of immunosuppressant and drug efficacy was emphatically analyzed. Detection of intracellular concentration of immunosuppressant possesses better application value in clinical practice, which is worthy of promotion in clinical settings.

     

  • loading
  • [1]
    OPTN/SRTR 2018 annual data report: introduction[J]. Am J Transplant, 2020, 20 (Suppl s1): 11-19. DOI: 10.1111/ajt.15671.
    [2]
    LOUPY A, LEFAUCHEUR C. Antibody-mediated rejection of solid-organ allografts[J]. N Engl J Med, 2018, 379(12): 1150-1160. DOI: 10.1056/NEJMra1802677.
    [3]
    SEN A, CALLISEN H, LIBRICZ S, et al. Complications of solid organ transplantation: cardiovascular, neurologic, renal, and gastrointestinal[J]. Crit Care Clin, 2019, 35(1): 169-186. DOI: 10.1016/j.ccc.2018.08.011.
    [4]
    Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients[J]. Am J Transplant, 2009, 9 (Suppl 3): S1-S155. DOI: 10.1111/j.1600-6143.2009.02834.x.
    [5]
    COSSART AR, ISBEL NM, SCUDERI C, et al. Pharmacokinetic and pharmacodynamic considerations in relation to calcineurin usage in elderly kidney transplant recipients[J]. Front Pharmacol, 2021, 12: 635165. DOI: 10.3389/fphar.2021.635165.
    [6]
    SIKMA MA, HUNAULT CC, HUITEMA ADR, et al. Clinical pharmacokinetics and impact of hematocrit on monitoring and dosing of tacrolimus early after heart and lung transplantation[J]. Clin Pharmacokinet, 2020, 59(4): 403-408. DOI: 10.1007/s40262-019-00846-1.
    [7]
    FONTOVA P, COLOM H, RIGO-BONNIN R, et al. Influence of the circadian timing system on tacrolimus pharmacokinetics and pharmacodynamics after kidney transplantation[J]. Front Pharmacol, 2021, 12: 636048. DOI: 10.3389/fphar.2021.636048.
    [8]
    TRON C, WOILLARD JB, HOUSSEL-DEBRY P, et al. Pharmacogenetic-whole blood and intracellular pharmacokinetic-pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients[J]. PLoS One, 2020, 15(3): e0230195. DOI: 10.1371/journal.pone.0230195.
    [9]
    SALLUSTIO BC, NOLL BD, HU R, et al. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients[J]. Br J Clin Pharmacol, 2021, DOI: 10.1111/bcp.14806[Epub ahead of print].
    [10]
    CAPRON A, LERUT J, VERBAANDERT C, et al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in liver biopsies after hepatic transplantation: correlation with histopathologic staging of rejection[J]. Ther Drug Monit, 2007, 29(3): 340-348. DOI: 10.1097/FTD.0b013e31805c73f1.
    [11]
    MD DOM ZI, NOLL BD, COLLER JK, et al. Validation of an LC-MS/MS method for the quantification of mycophenolic acid in human kidney transplant biopsies[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 945/946: 171-177. DOI: 10.1016/j.jchromb.2013.11.056.
    [12]
    ZAHIR H, NAND RA, BROWN KF, et al. Validation of methods to study the distribution and protein binding of tacrolimus in human blood[J]. J Pharmacol Toxicol Methods, 2001, 46(1): 27-35. DOI: 10.1016/s1056-8719(02)00158-2.
    [13]
    CAPRON A, LERUT J, LATINNE D, et al. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study[J]. Transpl Int, 2012, 25(1): 41-47. DOI: 10.1111/j.1432-2277.2011.01365.x.
    [14]
    KLAASEN RA, BERGAN S, BREMER S, et al. Longitudinal study of tacrolimus in lymphocytes during the first year after kidney transplantation[J]. Ther Drug Monit, 2018, 40(5): 558-566. DOI: 10.1097/FTD.0000000000000539.
    [15]
    HAN SS, YANG SH, KIM MC, et al. Monitoring the intracellular tacrolimus concentration in kidney transplant recipients with stable graft function[J]. PLoS One, 2016, 11(4): e0153491. DOI: 10.1371/journal.pone.0153491.
    [16]
    IN 'T VELD AE, GRIEVINK HW, SAGHARI M, et al. Immunomonitoring of tacrolimus in healthy volunteers: the first step from PK- to PD-based therapeutic drug monitoring?[J]. Int J Mol Sci, 2019, 20(19): 4710. DOI: 10.3390/ijms20194710.
    [17]
    LEPAGE JM, LELONG-BOULOUARD V, LECOUF A, et al. Cyclosporine monitoring in peripheral blood mononuclear cells: feasibility and interest. a prospective study on 20 renal transplant recipients[J]. Transplant Proc, 2007, 39(10): 3109-3110. DOI: 10.1016/j.transproceed.2007.03.103.
    [18]
    ANSERMOT N, FATHI M, VEUTHEY JL, et al. Quantification of cyclosporine A in peripheral blood mononuclear cells by liquid chromatography-electrospray mass spectrometry using a column-switching approach[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 857(1): 92-99. DOI: 10.1016/j.jchromb.2007.07.001.
    [19]
    ANSERMOT N, REBSAMEN M, CHABERT J, et al. Influence of ABCB1 gene polymorphisms and P-glycoprotein activity on cyclosporine pharmacokinetics in peripheral blood mononuclear cells in healthy volunteers[J]. Drug Metab Lett, 2008, 2(2): 76-82. DOI: 10.2174/187231208784040951.
    [20]
    ABDELHALIM MS, KENAWY AS, DEMELLAWY HHE, et al. The impact of omeprazole on mycophenolate pharmacokinetics in kidney transplant recipients[J]. Kidney Res Clin Pract, 2020, 39(4): 479-486. DOI: 10.23876/j.krcp.20.059.
    [21]
    NGUYEN THI MT, CAPRON A, MOURAD M, et al. Mycophenolic acid quantification in human peripheral blood mononuclear cells using liquid chromatography-tandem mass spectrometry[J]. Clin Biochem, 2013, 46(18): 1909-1911. DOI: 10.1016/j.clinbiochem.2013.09.009.
    [22]
    THI MT, MOURAD M, CAPRON A, et al. Plasma and intracellular pharmacokinetic-pharmacodynamic analysis of mycophenolic acid in de novo kidney transplant patients[J]. Clin Biochem, 2015, 48(6): 401-405. DOI: 10.1016/j.clinbiochem.2014.12.005.
    [23]
    CHEN B, LU JQ, SHAO K, et al. Establishment of a liquid chromatography-tandem mass spectrometry method for the determination of immunosuppressant levels in the peripheral blood mononuclear cells of Chinese renal transplant recipients[J]. Ther Drug Monit, 2020, 42(5): 686-694. DOI: 10.1097/FTD.0000000000000765.
    [24]
    ROULLET-RENOLEAU F, LEMAITRE F, ANTIGNAC M, et al. Everolimus quantification in peripheral blood mononuclear cells using ultra high performance liquid chromatography tandem mass spectrometry[J]. J Pharm Biomed Anal, 2012, 66: 278-281. DOI: 10.1016/j.jpba.2012.03.042.
    [25]
    ROBERTSEN I, VETHE NT, MIDTVEDT K, et al. Closer to the site of action: everolimus concentrations in peripheral blood mononuclear cells correlate well with whole blood concentrations[J]. Ther Drug Monit, 2015, 37(5): 675-680. DOI: 10.1097/FTD.0000000000000185.
    [26]
    ROBERTSEN I, DEBORD J, ÅSBERG A, et al. A limited sampling strategy to estimate exposure of everolimus in whole blood and peripheral blood mononuclear cells in renal transplant recipients using population pharmacokinetic modeling and bayesian estimators[J]. Clin Pharmacokinet, 2018, 57(11): 1459-1469. DOI: 10.1007/s40262-018-0646-5.
    [27]
    ROBERTSEN I, FALCK P, ANDREASSEN AK, et al. Endomyocardial, intralymphocyte, and whole blood concentrations of ciclosporin A in heart transplant recipients[J]. Transplant Res, 2013, 2(1): 5. DOI: 10.1186/2047-1440-2-5.
    [28]
    ROMANO P, DA LUZ FERNANDES M, DE ALMEIDA REZENDE EBNER P, et al. UPLC-MS/MS assay validation for tacrolimus quantitative determination in peripheral blood T CD4+ and B CD19+ lymphocytes[J]. J Pharm Biomed Anal, 2018, 152: 306-314. DOI: 10.1016/j.jpba.2018.01.002.
    [29]
    ALGHANEM SS, SOLIMAN MM, ALIBRAHIM AA, et al. Monitoring tacrolimus trough concentrations during the first year after kidney transplantation: a national retrospective cohort study[J]. Front Pharmacol, 2020, 11: 566638. DOI: 10.3389/fphar.2020.566638.
    [30]
    BRUNET M, VAN GELDER T, ÅSBERG A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report[J]. Ther Drug Monit, 2019, 41(3): 261-307. DOI: 10.1097/FTD.0000000000000640.
    [31]
    FRANCKE MI, HESSELINK DA, LI Y, et al. Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients[J]. Br J Clin Pharmacol, 2021, 87(4): 1918-1929. DOI: 10.1111/bcp.14585.
    [32]
    YILDIRIM E, ŞAHIN G, KALTUŞ Z, et al. Effect of CYP3A5 and ABCB1 gene polymorphisms on tacrolimus blood concentration in renal transplant recipients[J]. Clin Lab, 2019, 65(11). DOI: 10.7754/Clin.Lab.2019.190343.
    [33]
    SU L, YIN L, YANG J, et al. Correlation between gene polymorphism and blood concentration of calcineurin inhibitors in renal transplant recipients: an overview of systematic reviews[J]. Medicine (Baltimore), 2019, 98(26): e16113. DOI: 10.1097/MD.0000000000016113.
    [34]
    SHAO S, HU L, HAN Z, et al. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: a Meta-analysis[J]. Transl Androl Urol, 2020, 9(2): 673-683. DOI: 10.21037/tau.2020.03.42.
    [35]
    LEMAITRE F, VETHE NT, D'AVOLIO A, et al. Measuring intracellular concentrations of calcineurin inhibitors: expert consensus from the international association of therapeutic drug monitoring and clinical toxicology expert panel[J]. Ther Drug Monit, 2020, 42(5): 665-670. DOI: 10.1097/FTD.0000000000000780.
    [36]
    METZ DK, HOLFORD N, KAUSMAN JY, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention[J]. Transplantation, 2019, 103(10): 2012-2030. DOI: 10.1097/TP.0000000000002762.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (747) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return