Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Jia Degong, Jia Zhixing, Guo Shanshan, et al. Application progress of extracellular vesicle in liver transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 477-483. doi: 10.3969/j.issn.1674-7445.2021.04.016
Citation: Jia Degong, Jia Zhixing, Guo Shanshan, et al. Application progress of extracellular vesicle in liver transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 477-483. doi: 10.3969/j.issn.1674-7445.2021.04.016

Application progress of extracellular vesicle in liver transplantation

doi: 10.3969/j.issn.1674-7445.2021.04.016
More Information
  • Corresponding author: Cheng Ying, Email: chengying75@sina.com
  • Received Date: 2021-04-24
    Available Online: 2021-07-13
  • Publish Date: 2021-07-15
  • Liver transplantation is an effective treatment of end-stage liver diseases. However, liver ischemia-reperfusion injury (IRI) and rejection significantly cause the decrease of survival rate of liver graft. Therefore, it is urgent to explore a novel method, which can not only alleviate liver IRI, but also promote immune tolerance of allograft, thereby improving the survival rate of liver graft. Extracellular vesicle (EV) is nanoparticle released from cells into the extracellular microenvironment, which may alleviate graft injury by repairing autophagy, immunosuppression and accelerating tissue regeneration. Hence, EV becomes a research hot spot in the field of liver transplantation. Nevertheless, the clinical application of EV encounters multiple challenges, such as separation, purification, identification, storage of EV and how to deliver EV to the target cells. In this article, the mechanism of EV in liver IRI, the challenges in clinical application of EV and the potential application of EV were reviewed, aiming to provide reference for the clinical application of EV in liver transplantation.

     

  • loading
  • [1]
    TONIUTTO P, BITETTO D, FORNASIERE E, et al. Challenges and future developments in liver transplantation[J]. Minerva Gastroenterol Dietol, 2019, 65(2): 136-152. DOI: 10.23736/S1121-421X.18.02529-1.
    [2]
    MERION RM, SCHAUBEL DE, DYKSTRA DM, et al. The survival benefit of liver transplantation[J]. Am J Transplant, 2005, 5(2): 307-313. DOI: 10.1111/j.1600-6143.2004.00703.x.
    [3]
    DAR WA, SULLIVAN E, BYNON JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801. DOI: 10.1111/liv.14091.
    [4]
    ADAM R, KARAM V, CAILLIEZ V, et al. 2018 annual report of the European Liver Transplant Registry (ELTR) - 50-year evolution of liver transplantation[J]. Transpl Int, 2018, 31(12): 1293-1317. DOI: 10.1111/tri.13358.
    [5]
    RANA A, ACKAH RL, WEBB GJ, et al. No gains in long-term survival after liver transplantation over the past three decades[J]. Ann Surg, 2019, 269(1): 20-27. DOI: 10.1097/SLA.0000000000002650.
    [6]
    KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. DOI: 10.1126/science.aau6977.
    [7]
    刘晓莉, 周林, 韩崇旭. 骨髓瘤诊断及预后评估的新标志物-胞外囊泡[J]. 实用医学杂志, 2021, 37(8): 1084-1087, 1092. DOI: 10.3969/j.issn.1006-5725.2021.08.025.

    LIU XL, ZHOU L, HAN CX. Extracellular vesicle, a new marker for diagnosis and prognosis of myeloma[J]. J Pract Med, 2021, 37(8): 1084-1087, 1092. DOI: 10.3969/j.issn.1006-5725.2021.08.025.
    [8]
    WITWER KW, THÉRY C. Extracellular vesicles or exosomes? on primacy, precision, and popularity influencing a choice of nomenclature[J]. J Extracell Vesicles, 2019, 8(1): 1648167. DOI: 10.1080/20013078.2019.1648167.
    [9]
    VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. DOI: 10.1038/nrm.2017.125.
    [10]
    DU Y, LI D, HAN C, et al. Exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect liver against hepatic ischemia/ reperfusion injury via activating sphingosine kinase and sphingosine-1-phosphate signaling pathway[J]. Cell Physiol Biochem, 2017, 43(2): 611-625. DOI: 10.1159/000480533.
    [11]
    CHAROENVIRIYAKUL C, TAKAHASHI Y, MORISHITA M, et al. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: yield, physicochemical properties, and pharmacokinetics[J]. Eur J Pharm Sci, 2017, 96: 316-322. DOI: 10.1016/j.ejps.2016.10.009.
    [12]
    ALI M, PHAM A, WANG X, et al. Extracellular vesicles for treatment of solid organ ischemia-reperfusion injury[J]. Am J Transplant, 2020, 20(12): 3294-3307. DOI: 10.1111/ajt.16164.
    [13]
    XU Y, TANG Y, LU J, et al. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation[J]. Free Radic Biol Med, 2020, 160: 871-886. DOI: 10.1016/j.freeradbiomed.2020.09.015.
    [14]
    SYRJÄ P, PALVIAINEN M, JOKINEN T, et al. Altered basal autophagy affects extracellular vesicle release in cells of Lagotto Romagnolo dogs with a variant ATG4D[J]. Vet Pathol, 2020, 57(6): 926-935. DOI: 10.1177/0300985820959243.
    [15]
    YANG B, DUAN W, WEI L, et al. Bone marrow mesenchymal stem cell-derived hepatocyte-like cell exosomes reduce hepatic ischemia/reperfusion injury by enhancing autophagy[J]. Stem Cells Dev, 2020, 29(6): 372-379. DOI: 10.1089/scd.2019.0194.
    [16]
    ZHANG L, SONG Y, CHEN L, et al. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury[J]. J Cell Physiol, 2020, 235(4): 3698-3710. DOI: 10.1002/jcp.29264.
    [17]
    YAO J, ZHENG J, CAI J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response[J]. FASEB J, 2019, 33(2): 1695-1710. DOI: 10.1096/fj.201800131RR.
    [18]
    SAFAKHEIL M, SAFAKHEIL H. The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke[J]. J Mol Neurosci, 2020, 70(5): 724-737. DOI: 10.1007/s12031-020-01483-1.
    [19]
    SUN CK, CHEN CH, CHANG CL, et al. Melatonin treatment enhances therapeutic effects of exosomes against acute liver ischemia-reperfusion injury[J]. Am J Transl Res, 2017, 9(4): 1543-1560. http://europepmc.org/abstract/MED/28469765
    [20]
    NONG K, WANG W, NIU X, et al. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats[J]. Cytotherapy, 2016, 18(12): 1548-1559. DOI: 10.1016/j.jcyt.2016.08.002.
    [21]
    ZHENG L, LI Z, LING W, et al. Exosomes derived from dendritic cells attenuate liver injury by modulating the balance of Treg and Th17 cells after ischemia reperfusion[J]. Cell Physiol Biochem, 2018, 46(2): 740-756. DOI: 10.1159/000488733.
    [22]
    MA B, YANG JY, SONG WJ, et al. Combining exosomes derived from immature DCs with donor antigen-specific Treg cells induces tolerance in a rat liver allograft model[J]. Sci Rep, 2016, 6: 32971. DOI: 10.1038/srep32971.
    [23]
    HERRERA MB, FONSATO V, GATTI S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats[J]. J Cell Mol Med, 2010, 14(6B): 1605-1618. DOI: 10.1111/j.1582-4934.2009.00860.x.
    [24]
    ANGER F, CAMARA M, ELLINGER E, et al. Human mesenchymal stromal cell-derived extracellular vesicles improve liver regeneration after ischemia reperfusion injury in mice[J]. Stem Cells Dev, 2019, 28(21): 1451-1462. DOI: 10.1089/scd.2019.0085.
    [25]
    NOJIMA H, FREEMAN CM, SCHUSTER RM, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate[J]. J Hepatol, 2016, 64(1): 60-68. DOI: 10.1016/j.jhep.2015.07.030.
    [26]
    GARDINER C, DI VIZIO D, SAHOO S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5: 32945. DOI: 10.3402/jev.v5.32945.
    [27]
    COUMANS FAW, BRISSON AR, BUZAS EI, et al. Methodological guidelines to study extracellular vesicles[J]. Circ Res, 2017, 120(10): 1632-1648. DOI: 10.1161/CIRCRESAHA.117.309417.
    [28]
    NOCERA AL, MIYAKE MM, SEIFERT P, et al. Exosomes mediate interepithelial transfer of functional P-glycoprotein in chronic rhinosinusitis with nasal polyps[J]. Laryngoscope, 2017, 127(9): E295-E300. DOI: 10.1002/lary.26614.
    [29]
    GIMONA M, PACHLER K, LANER-PLAMBERGER S, et al. Manufacturing of human extracellular vesicle-based therapeutics for clinical use[J]. Int J Mol Sci, 2017, 18(6): 1190. DOI: 10.3390/ijms18061190.
    [30]
    DOYLE LM, WANG MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7): 727. DOI: 10.3390/cells8070727.
    [31]
    KONOSHENKO MY, LEKCHNOV EA, VLASSOV AV, et al. Isolation of extracellular vesicles: general methodologies and latest trends[J]. Biomed Res Int, 2018: 8545347. DOI: 10.1155/2018/8545347.
    [32]
    GAO J, DONG X, WANG Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications[J]. Methods, 2020, 177: 114-125. DOI: 10.1016/j.ymeth.2019.11.012.
    [33]
    PATEL DB, LUTHERS CR, LERMAN MJ, et al. Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system[J]. Acta Biomater, 2019, 95: 236-244. DOI: 10.1016/j.actbio.2018.11.024.
    [34]
    XIE H, WANG Z, ZHANG L, et al. Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced pro-angiogenic and pro-bone regeneration activities[J]. Sci Rep, 2017, 7: 45622. DOI: 10.1038/srep45622.
    [35]
    VAN DER POL E, STURK A, VAN LEEUWEN T, et al. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation[J]. J Thromb Haemost, 2018, 16(6): 1236-1245. DOI: 10.1111/jth.14009.
    [36]
    BARI E, DI SILVESTRE D, MASTRACCI L, et al. GMP-compliant sponge-like dressing containing MSC lyo-secretome: proteomic network of healing in a murine wound model[J]. Eur J Pharm Biopharm, 2020, 155: 37-48. DOI: 10.1016/j.ejpb.2020.08.003.
    [37]
    JEYARAM A, JAY SM. Preservation and storage stability of extracellular vesicles for therapeutic applications[J]. AAPS J, 2017, 20(1): 1. DOI: 10.1208/s12248-017-0160-y.
    [38]
    BROSSA A, FONSATO V, GRANGE C, et al. Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell-derived tumor growth in vitro and in vivo[J]. Int J Cancer, 2020, 147(6): 1694-1706. DOI: 10.1002/ijc.32925.
    [39]
    MONROE MN, ZHAORIGETU S, GUPTA VS, et al. Extracellular vesicles influence the pulmonary arterial extracellular matrix in congenital diaphragmatic hernia[J]. Pediatr Pulmonol, 2020, 55(9): 2402-2411. DOI: 10.1002/ppul.24914.
    [40]
    LIU Z, WU C, ZOU X, et al. Exosomes derived from mesenchymal stem cells inhibit neointimal hyperplasia by activating the Erk1/2 signalling pathway in rats[J]. Stem Cell Res Ther, 2020, 11(1): 220. DOI: 10.1186/s13287-020-01676-w.
    [41]
    GU X, LI Y, CHEN K, et al. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway[J]. J Cell Mol Med, 2020, 24(13): 7515-7530. DOI: 10.1111/jcmm.15378.
    [42]
    LIU J, CHEN T, LEI P, et al. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway[J]. Int J Med Sci, 2019, 16(9): 1238-1244. DOI: 10.7150/ijms.35369.
    [43]
    MAHDIPOUR E, SALMASI Z, SABETI N. Potential of stem cell-derived exosomes to regenerate β islets through Pdx-1 dependent mechanism in a rat model of type 1 diabetes[J]. J Cell Physiol, 2019, 234(11): 20310-20321. DOI: 10.1002/jcp.28631.
    [44]
    LIU Y, LOU G, LI A, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages[J]. EBioMedicine, 2018, 36: 140-150. DOI: 10.1016/j.ebiom.2018.08.054.
    [45]
    YANG J, LIU XX, FAN H, et al. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis[J]. PLoS One, 2015, 10(10): e0140551. DOI: 10.1371/journal.pone.0140551.
    [46]
    ZIPKIN M. Exosome redux[J]. Nat Biotechnol, 2019, 37(12): 1395-1400. DOI: 10.1038/s41587-019-0326-5.
    [47]
    EGGENHOFER E, BENSELER V, KROEMER A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297. DOI: 10.3389/fimmu.2012.00297.
    [48]
    SAMUELSSON E, SHEN H, BLANCO E, et al. Contribution of Kupffer cells to liposome accumulation in the liver[J]. Colloids Surf B Biointerfaces, 2017, 158: 356-362. DOI: 10.1016/j.colsurfb.2017.07.014.
    [49]
    MARTINS JP, DAS NEVES J, DE LA FUENTE M, et al. The solid progress of nanomedicine[J]. Drug Deliv Transl Res, 2020, 10(3): 726-729. DOI: 10.1007/s13346-020-00743-2.
    [50]
    KHALID A, PERSANO S, SHEN H, et al. Strategies for improving drug delivery: nanocarriers and microenvironmental priming[J]. Expert Opin Drug Deliv, 2017, 14(7): 865-877. DOI: 10.1080/17425247.2017.1243527.
    [51]
    GENTILE E, CILURZO F, DI MARZIO L, et al. Liposomal chemotherapeutics[J]. Future Oncol, 2013, 9(12): 1849-1859. DOI: 10.2217/fon.13.146.
    [52]
    BUSATTO S, WALKER SA, GRAYSON W, et al. Lipoprotein-based drug delivery[J]. Adv Drug Deliv Rev, 2020, 159: 377-390. DOI: 10.1016/j.addr.2020.08.003.
    [53]
    MAHMOUDIAN M, SALATIN S, KHOSROUSHAHI AY. Natural low- and high-density lipoproteins as mighty bio-nanocarriers for anticancer drug delivery[J]. Cancer Chemother Pharmacol, 2018, 82(3): 371-382. DOI: 10.1007/s00280-018-3626-4.
    [54]
    WOLFRAM J, FERRARI M. Clinical cancer nanomedicine[J]. Nano Today, 2019, 25: 85-98. DOI: 10.1016/j.nantod.2019.02.005.
    [55]
    ZHU X, BADAWI M, POMEROY S, et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells[J]. J Extracell Vesicles, 2017, 6(1): 1324730. DOI: 10.1080/20013078.2017.1324730.
    [56]
    SCAVO MP, GENTILE E, WOLFRAM J, et al. Multistage vector delivery of sulindac and silymarin for prevention of colon cancer[J]. Colloids Surf B Biointerfaces, 2015, 136: 694-703. DOI: 10.1016/j.colsurfb.2015.10.005.
    [57]
    SHEN J, LIU H, MU C, et al. Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles[J]. Nanoscale, 2017, 9(16): 5329-5341. DOI: 10.1039/c7nr00377c.
    [58]
    TARDI P, JOHNSTONE S, HARASYM N, et al. In vivo maintenance of synergistic cytarabine: daunorubicin ratios greatly enhances therapeutic efficacy[J]. Leuk Res, 2009, 33(1): 129-139. DOI: 10.1016/j.leukres.2008.06.028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (452) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return