Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Wang Jiachuan, Yu Xuewen, Xu Hua, et al. Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009
Citation: Wang Jiachuan, Yu Xuewen, Xu Hua, et al. Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 428-435. doi: 10.3969/j.issn.1674-7445.2021.04.009

Mechanism of Danhong injection in improving therapeutic effect of neural stem cell transplantation for cerebral ischemia injury

doi: 10.3969/j.issn.1674-7445.2021.04.009
More Information
  • Corresponding author: Wang Jiachuan, Email: jcwang0000@126.com
  • Received Date: 2021-04-30
    Available Online: 2021-07-13
  • Publish Date: 2021-07-15
  •   Objective  To investigate whether Danhong injection can enhance the therapeutic effect of neural stem cell (NSC) transplantation in repairing cerebral ischemia injury by regulating the nuclear factor E2-related factor 2 (Nrf2) signaling pathway.  Methods  Forty male SD rats were randomly divided into the NSC transplantation group (NSC group), Danhong injection group (DH group), NSC+ Danhong injection group (N+D group), NSC+ Danhong injection group +ML385 group(N+D+M group) and PBS control group (PBS group), 8 rats in each group. All rat models of cerebral ischemia were established by embolization of the middle cerebral artery. Reperfusion was performed at 1.5 h after embolization. All rats in each group received corresponding interventions at 3 d after reperfusion. The neurological function score was evaluated before and 1, 2, 4 weeks after NSC transplantation. All rats were sacrificed at 4 weeks after NSC transplantation. The parameters related to oxidative stress were detected. The expression levels of neuron-specific nuclear protein (NeuN) and von Willebrand factor (vWF) were determined by immunofluorescence staining.  Results  Before NSC transplantation, the neurological function scores did not significantly differ among different groups (all P > 0.05). At postoperative 1, 2 and 4 weeks, the neurological function scores in the NSC, DH and N+D groups were significantly lower than those in the PBS and N+D+M groups (all P < 0.05). Compared with the PBS and N+D+M groups, the malondialdehyde (MDA) levels were significantly decreased, whereas the superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels were considerably increased in the NSC, DH and N+D groups (all P < 0.05). The GPX level in the N+D+M group was significantly lower than that in the PBS group (P < 0.05). Immunofluorescence staining showed that the transplant NSC in the rat brain migrated to the surrounding area of cerebral infarction and survived, and expressed neuronal marker NeuN and neovascularization marker vWF. However, the number of living NSC in the N+D+M group was significantly lower compared with those in the remaining groups.  Conclusions  Danhong injection may improve the microenvironment of stem cell transplantation, enhance the survival rate of transplant NSC and improve the therapeutic effect of NSC transplantation for cerebral ischemia injury probably by regulating the Nrf2 signaling pathway.

     

  • loading
  • [1]
    戴玥, 郑佳, 郑黎强. 抗氧化物质和自由基产物与脑卒中关系的研究进展[J]. 实用医学杂志, 2019, 35(3): 489-491. DOI: 10.3969/j.issn.1006-5725.2019.03.035.

    DAI Y, ZHENG J, ZHENG LQ. Research progress on the relationship between antioxidants, free radical products and stroke[J]. J Pract Med, 2019, 35(3): 489-491. DOI: 10.3969/j.issn.1006-5725.2019.03.035.
    [2]
    RYU S, LEE SH, KIM SU, et al. Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain[J]. Neural Regen Res, 2016, 11(2): 298-304. DOI: 10.4103/1673-5374.177739.
    [3]
    QIAO LY, HUANG FJ, ZHAO M, et al. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients[J]. Cell Transplant, 2014, 23(Suppl 1): S65-S72. DOI: 10.3727/096368914X684961.
    [4]
    CHUNG JW, CHANG WH, BANG OY, et al. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke[J]. Neurology, 2021, 96(7): e1012-e1023. DOI: 10.1212/WNL.0000000000011440.
    [5]
    BHATIA V, GUPTA V, KHURANA D, et al. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke[J]. AJNR Am J Neuroradiol, 2018, 39(5): 899-904. DOI: 10.3174/ajnr.A5586.
    [6]
    DENG L, PENG Q, WANG H, et al. Intrathecal injection of allogenic bone marrow-derived mesenchymal stromal cells in treatment of patients with severe ischemic stroke: study protocol for a randomized controlled observer-blinded trial[J]. Transl Stroke Res, 2019, 10(2): 170-177. DOI: 10.1007/s12975-018-0634-y.
    [7]
    FANG Y, LIU X, ZHAO L, et al. RhGLP-1 (7-36) protects diabetic rats against cerebral ischemia-reperfusion injury via up-regulating expression of Nrf2/HO-1 and increasing the activities of SOD[J]. Korean J Physiol Pharmacol, 2017, 21(5): 475-485. DOI: 10.4196/kjpp.2017.21.5.475.
    [8]
    DING Y, CHEN M, WANG M, et al. Posttreatment with 11-Keto-β-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism[J]. Mol Neurobiol, 2015, 52(3): 1430-1439. DOI: 10.1007/s12035-014-8929-9.
    [9]
    YANG T, SUN Y, LI Q, et al. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: the role of Nrf2[J]. Exp Neurol, 2020, 325: 113142. DOI: 10.1016/j.expneurol.2019.113142.
    [10]
    TIAN Y, SU Y, YE Q, et al. Silencing of TXNIP alleviated oxidative stress injury by regulating MAPK-Nrf2 axis in ischemic stroke[J]. Neurochem Res, 2020, 45(2): 428-436. DOI: 10.1007/s11064-019-02933-y.
    [11]
    CUI HY, ZHANG XJ, YANG Y, et al. Rosmarinic acid elicits neuroprotection in ischemic stroke via Nrf2 and heme oxygenase 1 signaling[J]. Neural Regen Res, 2018, 13(12): 2119-2128. DOI: 10.4103/1673-5374.241463.
    [12]
    ZOU JB, ZHANG XF, WANG J, et al. The therapeutic efficacy of Danhong injection combined with percutaneous coronary intervention in acute coronary syndrome: a systematic review and Meta-analysis[J]. Front Pharmacol, 2018, 9: 550. DOI: 10.3389/fphar.2018.00550.
    [13]
    冯荣伟, 刘婷婷, 刘建芳, 等. 活血化瘀类药物治疗急性脑梗死的疗效及经济学评价[J]. 西北药学杂志, 2020, 35(1): 139-142. DOI: 10.3969/j.issn.1004-2407.2020.01.032.

    FENG RW, LIU TT, LIU JF, et al. Efficacy and pharmacy economic analysis of blood-activating stasis-removing drugs for acute cerebral infarction[J]. Northwest Pharm J, 2020, 35(1): 139-142. DOI: 10.3969/j.issn.1004-2407.2020.01.032.
    [14]
    LI SN, LI P, LIU WH, et al. Danhong injection enhances angiogenesis after myocardial infarction by activating MiR-126/ERK/VEGF pathway[J]. Biomed Pharmacother, 2019, 120: 109538. DOI: 10.1016/j.biopha. 2019.109538.
    [15]
    FENG C, WAN H, ZHANG Y, et al. Neuroprotective effect of Danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway[J]. Front Pharmacol, 2020, 11: 298. DOI: 10.3389/fphar.2020.00298.
    [16]
    HUANG C, HUANG C, ZHOU G. Danhong injection for the treatment of early diabetic nephropathy: a protocol of systematic review and Meta-analysis[J]. Medicine (Baltimore), 2020, 99(43): e22716. DOI: 10.1097/MD. 0000000000022716.
    [17]
    WANG G, HAN B, SHEN L, et al. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke[J]. EBioMedicine, 2020, 52: 102660. DOI: 10.1016/j.ebiom.2020.102660.
    [18]
    余学问, 徐华, 黄忠华, 等. HIF-2α基因下调后的诱导多能干细胞移植对大鼠脑缺血损伤治疗作用的影响[J]. 器官移植, 2018, 9(6): 417-423. DOI: 10.3969/j.issn.1674-7445.2018.06.004.

    YU XW, XU H, HUANG ZH, et al. Effect of induced pluripotent stem cell transplantation on treatment of cerebral ischemic injury in rats after down-regulation of HIF-2α gene[J]. Organ Transplant, 2018, 9(6): 417-423. DOI: 10.3969/j.issn.1674-7445.2018.06.004.
    [19]
    ZHANG T, WU P, BUDBAZAR E, et al. Mitophagy reduces oxidative stress via Keap1 (Kelch-like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats[J]. Stroke, 2019, 50(4): 978-988. DOI: 10.1161/STROKEAHA.118.021590.
    [20]
    CHEN J, SANBERG PR, LI Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32(11): 2682-2688. DOI: 10.1161/hs1101.098367.
    [21]
    ROMPOLAS P, MESA KR, GRECO V. Spatial organization within a niche as a determinant of stem-cell fate[J]. Nature, 2013, 502(7472): 513-518. DOI: 10.1038/nature12602.
    [22]
    唐敏英, 雷艳, 詹世淮, 等. 三维培养的间充质干细胞球体的生物学特性及应用的研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2020, 10(5): 314-318. DOI: 10.3877/cma.j.issn.2095-1221.2020.05.011.

    TANG MY, LEI Y, ZHAN SH, et al. Advances in biological characteristics and applications of mesenchymal stem cells spheroids under three-dimensional culture[J/CD]. Chin J Cell Stem Cell (Electr Edit), 2020, 10(5): 314-318. DOI: 10.3877/cma.j.issn.2095-1221.2020.05.011.
    [23]
    CHEN X, SHEN WB, YANG P, et al. High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress[J]. Stem Cells Dev, 2018, 27(11): 745-755. DOI: 10.1089/scd.2017.0203.
    [24]
    CHEN F, LIU Y, WONG NK, et al. Oxidative stress in stem cell aging[J]. Cell Transplant, 2017, 26(9): 1483-1495. DOI: 10.1177/0963689717735407.
    [25]
    TAN DQ, SUDA T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function[J]. Antioxid Redox Signal, 2018, 29(2): 149-168. DOI: 10.1089/ars.2017.7273.
    [26]
    SAKAI D, TRAINOR PA. Face off against ROS: Tcof1/Treacle safeguards neuroepithelial cells and progenitor neural crest cells from oxidative stress during craniofacial development[J]. Dev Growth Differ, 2016, 58(7): 577-585. DOI: 10.1111/dgd.12305.
    [27]
    LIU Q, TAN Y, QU T, et al. Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro[J]. Life Sci, 2020, 254: 117772. DOI: 10.1016/j.lfs.2020.117772.
    [28]
    KASPAR JW, NITURE SK, JAISWAL AK. Nrf2: INrf2 (Keap1) signaling in oxidative stress[J]. Free Radic Biol Med, 2009, 47(9): 1304-1309. DOI: 10.1016/j.freeradbiomed.2009.07.035.
    [29]
    GUO M, LU H, QIN J, et al. Biochanin a provides neuroprotection against cerebral ischemia/reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats[J]. Med Sci Monit, 2019, 25: 8975-8983. DOI: 10.12659/MSM.918665.
    [30]
    LU Y, WU S, XIANG B, et al. Curcumin attenuates oxaliplatin-induced liver injury and oxidative stress by activating the Nrf2 pathway[J]. Drug Des Devel Ther, 2020, 14: 73-85. DOI: 10.2147/DDDT.S224318.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (381) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return