Volume 12 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Wu Lingling, Jiang Peng, Wu Zhen, et al. Research status and prospect of basic application of islet organoid[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 397-402. doi: 10.3969/j.issn.1674-7445.2021.04.005
Citation: Wu Lingling, Jiang Peng, Wu Zhen, et al. Research status and prospect of basic application of islet organoid[J]. ORGAN TRANSPLANTATION, 2021, 12(4): 397-402. doi: 10.3969/j.issn.1674-7445.2021.04.005

Research status and prospect of basic application of islet organoid

doi: 10.3969/j.issn.1674-7445.2021.04.005
More Information
  • Corresponding author: Gao Hongjun, Email: gao4056@163.com
  • Received Date: 2021-03-01
    Available Online: 2021-07-13
  • Publish Date: 2021-07-15
  • Organoids are tissue structures, generated from pluripotent stem cells and cultured in vitro, which form self-organize and recapitulate tissues with similar structure and function to the original organs. Organoids have similar appearance and function to the original tissues, and have been widely applied in basic research and clinical trial. At present, the organoids of liver, kidney, islet, brain, intestine and other organs have been successfully cultivated. The use of islet organoid is a hotspot in the field of organoid research. However, islet organoid is currently applied in basic research because rejection after organ transplantation and other issues remain unresolved. In this article, the origin, development and basic application of islet organoid were reviewed, aiming to provide reference for the transformation from basic research of islet organoid into clinical application as well as the treatment of diabetes mellitus.

     

  • loading
  • [1]
    SCHUTGENS F, CLEVERS H. Human organoids: tools for understanding biology and treating diseases[J]. Annu Rev Pathol, 2020, 15: 211-234. DOI: 10.1146/annurev-pathmechdis-012419-032611.
    [2]
    CORRÒ C, NOVELLASDEMUNT L, LI VSW. A brief history of organoids[J]. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165. DOI: 10.1152/ajpcell.00120.2020.
    [3]
    ROSSI G, MANFRIN A, LUTOLF MP. Progress and potential in organoid research[J]. Nat Rev Genet, 2018, 19(11): 671-687. DOI: 10.1038/s41576-018-0051-9.
    [4]
    BLEIJS M, VAN DE WETERING M, CLEVERS H, et al. Xenograft and organoid model systems in cancer research[J]. EMBO J, 2019, 38(15): e101654. DOI: 10.15252/embj.2019101654.
    [5]
    MONTEL-HAGEN A, SEET CS, LI S, et al. Organoid-induced differentiation of conventional T cells from human pluripotent stem cells[J]. Cell Stem Cell, 2019, 24(3): 376-389. DOI: 10.1016/j.stem.2018.12.011.
    [6]
    MUN SJ, RYU JS, LEE MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids[J]. J Hepatol, 2019, 71(5): 970-985. DOI: 10.1016/j.jhep.2019.06.030.
    [7]
    MORA C, SERZANTI M, CONSIGLIO A, et al. Clinical potentials of human pluripotent stem cells[J]. Cell Biol Toxicol, 2017, 33(4): 351-360. DOI: 10.1007/s10565-017-9384-y.
    [8]
    CITO M, PELLEGRINI S, PIEMONTI L, et al. The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes[J]. Endocr Connect, 2018, 7(3): R114-R125. DOI: 10.1530/EC-18-0012.
    [9]
    TAKEBE T, WELLS JM. Organoids by design[J]. Science, 2019, 364(6444): 956-959. DOI: 10.1126/science.aaw7567.
    [10]
    GOODMAN KCL. Organoid culture of the blood-vessel wall[J]. TCA Manual, 1978, 4(4): 929-931.
    [11]
    YAP KK, GERRAND YW, DINGLE AM, et al. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids[J]. Biomaterials, 2020, 251: 120091. DOI: 10. 1016/j.biomaterials.2020.120091.
    [12]
    NICKELS SL, MODAMIO J, MENDES-PINHEIRO B, et al. Reproducible generation of human midbrain organoids for in vitro modeling of Parkinson's disease[J]. Stem Cell Res, 2020, 46: 101870. DOI: 10.1016/j.scr.2020. 101870.
    [13]
    HOLLYWOOD JA, PRZEPIORSKI A, D'SOUZA RF, et al. Use of human induced pluripotent stem cells and kidney organoids to develop a cysteamine/mTOR inhibition combination therapy for cystinosis[J]. J Am Soc Nephrol, 2020, 31(5): 962-982. DOI: 10.1681/ASN.2019070712.
    [14]
    BAKER LA, TIRIAC H, TUVESON DA. Generation and culture of human pancreatic ductal adenocarcinoma organoids from resected tumor specimens[J]. Methods Mol Biol, 2019, 1882: 97-115. DOI: 10.1007/978-1-4939-8879-2_9.
    [15]
    REDING B, CARTER P, QI Y, et al. Manipulate intestinal organoids with niobium carbide nanosheets[J]. J Biomed Mater Res A, 2021, 109(4): 479-487. DOI: 10.1002/jbm.a.37032.
    [16]
    MONTESANO R, MOURON P, AMHERDT M, et al. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids[J]. J Cell Biol, 1983, 97(3): 935-959. DOI: 10.1083/jcb.97.3.935.
    [17]
    CANDIELLO J, GRANDHI TSP, GOH SK, et al. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform[J]. Biomaterials, 2018, 177: 27-39. DOI: 10.1016/j.biomaterials.2018.05.031.
    [18]
    魏统辉, 刘新凤, 崔栋, 等. 2型糖尿病患者大脑灰质密度改变及其与认知受损的相关性研究[J]. 中国医学物理学杂志, 2018, 35(3): 364-368. DOI: 10.3969/j.issn. 1005-202X.2018.03.021.

    WEI TH, LIU XF, CUI D, et al. Gray matter density alteration and its correlation with cognitive impairment in patients with type 2 diabetes mellitus[J]. Chin J Med Phys, 2018, 35(3): 364-368. DOI: 10.3969/j.issn.1005-202X. 2018.03.021.
    [19]
    MEMON B, ABDELALIM EM. Stem cell therapy for diabetes: beta cells versus pancreatic progenitors[J]. Cells, 2020, 9(2): 283. DOI: 10.3390/cells9020283.
    [20]
    AGUAYO-MAZZUCATO C, ANDLE J, LEE TB JR, et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes[J]. Cell Metab, 2019, 30(1): 129-142. DOI: 10.1016/j.cmet.2019.05.006.
    [21]
    GAMBLE A, PEPPER AR, BRUNI A, et al. The journey of islet cell transplantation and future development[J]. Islets, 2018, 10(2): 80-94. DOI: 10.1080/19382014.2018.1428511.
    [22]
    SHAHJALAL HM, ABDAL DAYEM A, LIM KM, et al. Generation of pancreatic β cells for treatment of diabetes: advances and challenges[J]. Stem Cell Res Ther, 2018, 9(1): 355. DOI: 10.1186/s13287-018-1099-3.
    [23]
    NAIR GG, TZANAKAKIS ES, HEBROK M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy[J]. Nat Rev Endocrinol, 2020, 16(9): 506-518. DOI: 10.1038/s41574-020-0375-3.
    [24]
    陈昕涛, 王敏君, 严文韬, 等. 1型糖尿病动物模型和干细胞治疗的研究进展[J]. 癌变·畸变·突变, 2019, 31(4): 327-330. DOI: 10.3969/j.issn.1004-616x.2019.04.012.

    CHEN XT, WANG MJ, YAN WT, et al. Research progress in animal models of type 1 diabetes and stem cell therapy[J]. Carcinog Teratog Mutagen, 2019, 31(4): 327-330. DOI: 10.3969/j.issn.1004-616x.2019.04.012.
    [25]
    VELAZCO-CRUZ L, SONG J, MAXWELL KG, et al. Acquisition of dynamic function in human stem cell-derived β cells[J]. Stem Cell Reports, 2019, 12(2): 351-365. DOI: 10.1016/j.stemcr.2018.12.012.
    [26]
    PAGLIUCA FW, MILLMAN JR, GÜRTLER M, et al. Generation of functional human pancreatic β cells in vitro[J]. Cell, 2014, 159(2): 428-439. DOI: 10.1016/j.cell. 2014.09.040.
    [27]
    RUSS HA, PARENT AV, RINGLER JJ, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro[J]. EMBO J, 2015, 34(13): 1759-1772. DOI: 10.15252/embj.201591058.
    [28]
    HOGREBE NJ, AUGSORNWORAWAT P, MAXWELL KG, et al. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38(4): 460-470. DOI: 10.1038/s41587-020-0430-6.
    [29]
    JIANG W, SHI Y, ZHAO D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells[J]. Cell Res, 2007, 17(4): 333-344. DOI: 10.1038/cr.2007.28.
    [30]
    SHIM JH, KIM J, HAN J, et al. Pancreatic islet-like three-dimensional aggregates derived from human embryonic stem cells ameliorate hyperglycemia in streptozotocin-induced diabetic mice[J]. Cell Transplant, 2015, 24(10): 2155-2168. DOI: 10.3727/096368914X685438.
    [31]
    KIM Y, KIM H, KO UH, et al. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo[J]. Sci Rep, 2016, 6: 35145. DOI: 10.1038/srep35145.
    [32]
    VEGAS AJ, VEISEH O, GÜRTLER M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice[J]. Nat Med, 2016, 22(3): 306-311. DOI: 10.1038/nm.4030.
    [33]
    陈幼芳, 杜剑峰, 吴家祥, 等. 小鼠多能干细胞诱导的功能性胰岛素分泌细胞对1型糖尿病小鼠的治疗作用研究[J]. 中国糖尿病杂志, 2020, 28(1): 49-55. DOI: 10.3969/j.issn.1006-6187.2020.01.011.

    CHEN YF, DU JF, WU JX, et al. Therapeutic effect of functional insulin-secreting cells induced by mouse pluripotent stem cells in mice with type 1 diabetes[J]. Chin J Diabetes, 2020, 28(1): 49-55. DOI: 10.3969/j.issn.1006-6187.2020.01.011.
    [34]
    杜娟, 刘雪来. 诱导多能干细胞: 糖尿病治疗的新种子细胞[J]. 中华内分泌外科杂志, 2017, 11(3): 236-240, 253. DOI: 10.3760/cma.j.issn.1674-6090.2017.03.015.

    DU J, LIU XL. Induced pluripotent stem cell-a new approach to diabetic problems[J]. Chin J Endocr Surg, 2017, 11(3): 236-240, 253. DOI: 10.3760/cma.j.issn.1674-6090.2017.03.015.
    [35]
    吴珊珊, 顾俊菲, 张永明. 干细胞治疗1型糖尿病的研究进展[J]. 医学综述, 2020, 26(13): 2647-2653. DOI: 10.3969/j.issn.1006-2084.2020.13.030.

    WU SS, GU JF, ZHANG YM. Research progress of stem cell therapy for type 1 diabetes[J]. Med Recap, 2020, 26(13): 2647-2653. DOI: 10.3969/j.issn.1006-2084. 2020.13.030.
    [36]
    ALIPIO Z, LIAO W, ROEMER EJ, et al. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells[J]. Proc Natl Acad Sci U S A, 2010, 107(30): 13426-13431. DOI: 10.1073/pnas.1007884107.
    [37]
    JEON K, LIM H, KIM JH, et al. Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model[J]. Stem Cells Dev, 2012, 21(14): 2642-2655. DOI: 10.1089/scd.2011.0665.
    [38]
    WANG L, HUANG Y, GUO Q, et al. Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of Pdx-1, NeuroD1 and MafA[J]. Diabetes Res Clin Pract, 2014, 104(3): 383-392. DOI: 10.1016/j.diabres.2014.03.017.
    [39]
    RAIKWAR SP, KIM EM, SIVITZ WI, et al. Human iPS cell-derived insulin producing cells form vascularized organoids under the kidney capsules of diabetic mice[J]. PLoS One, 2015, 10(1): e0116582. DOI: 10.1371/journal.pone.0116582.
    [40]
    YABE SG, FUKUDA S, TAKEDA F, et al. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells[J]. J Diabetes, 2017, 9(2): 168-179. DOI: 10.1111/1753-0407.12400.
    [41]
    SAITO H, TAKEUCHI M, CHIDA K, et al. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro[J]. PLoS One, 2011, 6(12): e28209. DOI: 10.1371/journal.pone.0028209.
    [42]
    LEBRETON F, LAVALLARD V, BELLOFATTO K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 2019, 10(1): 4491. DOI: 10.1038/s41467-019-12472-3.
    [43]
    GAO Y, ZHANG R, DAI S, et al. Role of TGF-β/Smad pathway in the transcription of pancreas-specific genes during beta cell differentiation[J]. Front Cell Dev Biol, 2019, 7: 351. DOI: 10.3389/fcell.2019.00351.
    [44]
    闫承志. 转录因子Pdx1在胰腺发育及糖尿病中的研究进展[J]. 生命科学, 2019, 31(11): 1173-1178. DOI: 10.13376/j.cbls/2019144.

    YAN CZ. The role of Pdx1 in pancreas development and diabetes[J]. Chin Bull Life Sci, 2019, 31(11): 1173-1178. DOI: 10.13376/j.cbls/2019144.
    [45]
    VILARINO M, RASHID ST, SUCHY FP, et al. CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep[J]. Sci Rep, 2017, 7(1): 17472. DOI: 10.1038/s41598-017-17805-0.
    [46]
    吴邢, 檀梦天, 覃晓莉, 等. 神经元素3基因沉默对脐源性胰岛前体细胞MafA表达的影响[J]. 解剖学报, 2020, 51(5): 758-764. DOI: 10.16098/j.issn.0529-1356. 2020.05.020.

    WU X, TAN MT, QIN XL, et al. Effects of neurogenin 3 gene silencing on MafA expression in umbilical-derived pancreatic progenitor cells[J]. Acta AnatSin, 2020, 51(5): 758-764. DOI: 10.16098/j.issn.0529-1356.2020.05.020.
    [47]
    CHEN YJ, FINKBEINER SR, WEINBLATT D, et al. De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts[J]. Cell Rep, 2014, 6(6): 1046-1058. DOI: 10.1016/j.celrep.2014.02.013.
    [48]
    ARIYACHET C, TOVAGLIERI A, XIANG G, et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation[J]. Cell Stem Cell, 2016, 18(3): 410-421. DOI: 10.1016/j.stem.2016.01.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (601) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return