Volume 12 Issue 3
May  2021
Turn off MathJax
Article Contents
Li Zhongda, Liu Dong, Wang Xiao, et al. Application prospects of trigonelline in regulating metabolic disorders after renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017
Citation: Li Zhongda, Liu Dong, Wang Xiao, et al. Application prospects of trigonelline in regulating metabolic disorders after renal transplantation[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 363-368. doi: 10.3969/j.issn.1674-7445.2021.03.017

Application prospects of trigonelline in regulating metabolic disorders after renal transplantation

doi: 10.3969/j.issn.1674-7445.2021.03.017
More Information
  • Corresponding author: Liu Dong, Email: ld177@163.com
  • Received Date: 2021-02-21
    Available Online: 2021-05-19
  • Publish Date: 2021-05-15
  • Metabolic disorders, such as glucose and lipid, are likely to occur after renal transplantation, leading to graft dysfunction and reduced long-term survival. Trigonelline is a type of natural alkaloid with various biological activities, which can alleviate the metabolic disorders of glucose, lipid and other types, and relieve inflammatory reaction, oxidative stress and cell apoptosis of the kidney, thereby protecting the renal function. Therefore, trigonelline may be a potential drug to regulate metabolic disorders after renal transplantation. In this article, the role of trigonelline in metabolic disorders of glucose, lipid and other types, and its application prospect in renal transplantation were reviewed, aiming to provide reference for alleviating metabolic disorders after renal transplantation and improving the long-term survival of renal transplant recipients and transplanted kidneys.

     

  • loading
  • [1]
    CHOI M, MUKHERJEE S, YUN JW. Trigonelline induces browning in 3T3-L1 white adipocytes[J]. Phytother Res, 2021, 35(2): 1113-1124. DOI: 10.1002/ptr.6892.
    [2]
    SHEWEITA SA, ELHADY SA, HAMMODA HM. Trigonella stellata reduced the deleterious effects of diabetes mellitus through alleviation of oxidative stress, antioxidant- and drug-metabolizing enzymes activities[J]. J Ethnopharmacol, 2020, 256: 112821. DOI: 10.1016/j.jep.2020.112821.
    [3]
    NUGRAHINI AD, ISHIDA M, NAKAGAWA T, et al. Trigonelline: an alkaloid with anti-degranulation properties[J]. Mol Immunol, 2020, 118: 201-209. DOI: 10.1016/j.molimm.2019.12.020.
    [4]
    NISHINA Y, SATO K, SHIGA K. Proton release from flavoprotein D-amino acid oxidase on complexation with the zwitterionic ligand, trigonelline[J]. J Biochem, 1990, 107(5): 726-731. DOI: 10.1093/oxfordjournals.jbchem.a123116.
    [5]
    ABDO S, SHI Y, OTOUKESH A, et al. Catalase overexpression prevents nuclear factor erythroid 2-related factor 2 stimulation of renal angiotensinogen gene expression, hypertension, and kidney injury in diabetic mice[J]. Diabetes, 2014, 63(10): 3483-3496. DOI: 10.2337/db13-1830.
    [6]
    KANDHARE AD, THAKURDESAI PA, WANGIKAR P, et al. A systematic literature review of fenugreek seed toxicity by using ToxRTool: evidence from preclinical and clinical studies[J]. Heliyon, 2019, 5(4): e01536. DOI: 10.1016/j.heliyon.2019.e01536.
    [7]
    RAO AS, HEGDE S, PACIORETTY LM, et al. Nigella sativa and trigonella foenum-graecum supplemented chapatis safely improve HbA1c, body weight, waist circumference, blood lipids, and fatty liver in overweight and diabetic subjects: a twelve-week safety and efficacy study[J]. J Med Food, 2020, 23(9): 905-919. DOI: 10.1089/jmf.2020.0075.
    [8]
    MOHAMMED A, ISLAM MS. Spice-derived bioactive ingredients: potential agents or food adjuvant in the management of diabetes mellitus[J]. Front Pharmacol, 2018, 9: 893. DOI: 10.3389/fphar.2018.00893.
    [9]
    MOHAMADI N, SHARIFIFAR F, POURNAMDARI M, et al. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid[J]. J Diet Suppl, 2018, 15(2): 207-222. DOI: 10.1080/19390211.2017.1329244.
    [10]
    RIEDEL A, LANG R, ROHM B, et al. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression[J]. J Nutr Biochem, 2014, 25(7): 750-757. DOI: 10.1016/j.jnutbio.2014.03.002.
    [11]
    SHARMA L, LONE NA, KNOTT RM, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy[J]. Food Chem Toxicol, 2018, 121: 283-296. DOI: 10.1016/j.fct.2018.09.011.
    [12]
    PEERAPEN P, THONGBOONKERD V. Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: an in vitro study[J]. Food Chem Toxicol, 2020, 135: 110915. DOI: 10.1016/j.fct.2019.110915.
    [13]
    SHAO X, CHEN C, MIAO C, et al. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline[J]. Pharmazie, 2019, 74(8): 492-498. DOI: 10.1691/ph.2019.8903.
    [14]
    COHEN E, KORAH M, CALLENDER G, et al. Metabolic disorders with kidney transplant[J]. Clin J Am Soc Nephrol, 2020, 15(5): 732-742. DOI: 10.2215/CJN.09310819.
    [15]
    PIOTTI G, GANDOLFINI I, PALMISANO A, et al. Metabolic risk profile in kidney transplant candidates and recipients[J]. Nephrol Dial Transplant, 2019, 34(3): 388-400. DOI: 10.1093/ndt/gfy151.
    [16]
    COHEN-BUCAY A, GORDON CE, FRANCIS JM. Non-immunological complications following kidney transplantation[J]. F1000Res, 2019, 8: F1000 Faculty Rev-194. DOI: 10.12688/f1000research.16627.1.
    [17]
    CHRISTODOULOU MI, TCHOUMTCHOUA J, SKALTSOUNIS AL, et al. Natural alkaloids intervening the insulin pathway: new hopes for anti-diabetic agents?[J]. Curr Med Chem, 2019, 26(32): 5982-6015. DOI: 10.2174/0929867325666180430152618.
    [18]
    COSTA MC, LIMA TFO, ARCARO CA, et al. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity[J]. J Nutr Biochem, 2020, 76: 108303. DOI: 10.1016/j.jnutbio.2019.108303.
    [19]
    DELGADO P, DIAZ JM, SILVA I, et al. Unmasking glucose metabolism alterations in stable renal transplant recipients: a multicenter study[J]. Clin J Am Soc Nephrol, 2008, 3(3): 808-813. DOI: 10.2215/CJN.04921107.
    [20]
    JENSSEN T, HARTMANN A. Emerging treatments for post-transplantation diabetes mellitus[J]. Nat Rev Nephrol, 2015, 11(8): 465-477. DOI: 10.1038/nrneph.2015.59.
    [21]
    CONTE C, SECCHI A. Post-transplantation diabetes in kidney transplant recipients: an update on management and prevention[J]. Acta Diabetol, 2018, 55(8): 763-779. DOI: 10.1007/s00592-018-1137-8.
    [22]
    TRIÑANES J, RODRIGUEZ-RODRIGUEZ AE, BRITO-CASILLAS Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells[J]. Am J Transplant, 2017, 17(11): 2829-2840. DOI: 10.1111/ajt.14323.
    [23]
    COLE EH, JOHNSTON O, ROSE CL, et al. Impact of acute rejection and new-onset diabetes on long-term transplant graft and patient survival[J]. Clin J Am Soc Nephrol, 2008, 3(3): 814-821. DOI: 10.2215/CJN.04681107.
    [24]
    KLANGJAREONCHAI T, EGUCHI N, TANTISATTAMO E, et al. Current pharmacological intervention and medical management for diabetic kidney transplant recipients[J]. Pharmaceutics, 2021, 13(3): 413. DOI: 10. 3390/pharmaceutics13030413.
    [25]
    LIU L, DU X, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. Eur J Pharmacol, 2018, 836: 115-121. DOI: 10.1016/j.ejphar.2018.08.025.
    [26]
    SPATOLA L, FERRARO PM, GAMBARO G, et al. Metabolic syndrome and uric acid nephrolithiasis: insulin resistance in focus[J]. Metabolism, 2018, 83: 225-233. DOI: 10.1016/j.metabol.2018.02.008.
    [27]
    OTERDOOM LH, DE VRIES AP, GANSEVOORT RT, et al. Determinants of insulin resistance in renal transplant recipients[J]. Transplantation, 2007, 83(1): 29-35. DOI: 10.1097/01.tp.0000245844.27683.48.
    [28]
    SARAFIDIS PA, RUILOPE LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications[J]. Am J Nephrol, 2006, 26(3): 232-244. DOI: 10.1159/000093632.
    [29]
    LI Y, LI Q, WANG C, et al. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-γ[J]. Exp Ther Med, 2019, 18(2): 1331-1337. DOI: 10.3892/etm.2019.7698.
    [30]
    OHASHI N, ISOBE S, MATSUYAMA T, et al. The intrarenal renin-angiotensin system is activated immediately after kidney donation in kidney transplant donors[J]. Intern Med, 2019, 58(5): 643-648. DOI: 10.2169/internalmedicine.1756-18.
    [31]
    FU H, DESVERGNE B, FERRARI S, et al. Impaired musculoskeletal response to age and exercise in PPARβ(-/-) diabetic mice[J]. Endocrinology, 2014, 155(12): 4686-4696. DOI: 10.1210/en.2014-1585.
    [32]
    GANDHI GR, JOTHI G, ANTONY PJ, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway[J]. Eur J Pharmacol, 2014, 745: 201-216. DOI: 10.1016/j.ejphar.2014.10.044.
    [33]
    SURESHA BS, SRINIVASAN K. Fungal metabolite nigerloxin ameliorates diabetic nephropathy and gentamicin-induced renal oxidative stress in experimental rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(9): 849-859. DOI: 10.1007/s00210-014-1001-5.
    [34]
    LIGHTNER AL, LAU J, OBAYASHI P, et al. Potential nutritional conflicts in bariatric and renal transplant patients[J]. Obes Surg, 2011, 21(12): 1965-1970. DOI: 10.1007/s11695-011-0423-0.
    [35]
    ILAVENIL S, ARASU MV, LEE JC, et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells[J]. Phytomedicine, 2014, 21(5): 758-765. DOI: 10.1016/j.phymed.2013.11.007.
    [36]
    ANWAR S, BHANDARI U, PANDA BP, et al. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk[J]. J Pharm Biomed Anal, 2018, 159: 100-112. DOI: 10.1016/j.jpba.2018.06.027.
    [37]
    ROMANO KA, MARTINEZ-DEL CAMPO A, KASAHARA K, et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption[J]. Cell Host Microbe, 2017, 22(3): 279-290. DOI: 10.1016/j.chom.2017.07.021.
    [38]
    SANAJOU D, GHORBANI HAGHJO A, ARGANI H, et al. AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions[J]. Eur J Pharmacol, 2018, 833: 158-164. DOI: 10.1016/j.ejphar.2018.06.001.
    [39]
    ELGSTOEN KB, JOHNSEN LF, WOLDSETH B, et al. Plasma oxalate following kidney transplantation in patients without primary hyperoxaluria[J]. Nephrol Dial Transplant, 2010, 25(7): 2341-2345. DOI: 10.1093/ndt/gfq065.
    [40]
    HOPPE B, BECK BB, MILLINER DS. The primary hyperoxalurias[J]. Kidney Int, 2009, 75(12): 1264-1271. DOI: 10.1038/ki.2009.32.
    [41]
    PALSSON R, CHANDRAKER AK, CURHAN GC, et al. The association of calcium oxalate deposition in kidney allografts with graft and patient survival[J]. Nephrol Dial Transplant, 2020, 35(5): 888-894. DOI: 10.1093/ndt/gfy271.
    [42]
    BILAR JM, FUCUTA PDS, FELDNER AC, et al. Iron overload in renal transplant patients: the role of hepcidin and erythropoietin[J]. Transplant Proc, 2020, 52(1): 169-174. DOI: 10.1016/j.transproceed.2019.10.020.
    [43]
    KOPPENOL WH. The centennial of the Fenton reaction[J]. Free Radic Biol Med, 1993, 15(6): 645-651. DOI: 10.1016/0891-5849(93)90168-t.
    [44]
    VAN RAAIJ SEG, MASEREEUW R, SWINKELS DW, et al. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells[J]. Toxicol Lett, 2018, 295: 179-186. DOI: 10.1016/j.toxlet.2018.06.1218.
    [45]
    KATSAROU A, PANTOPOULOS K. Hepcidin therapeutics[J]. Pharmaceuticals (Basel), 2018, 11(4): 127. DOI: 10.3390/ph11040127.
    [46]
    SCHAEFER B, EFFENBERGER M, ZOLLER H. Iron metabolism in transplantation[J]. Transpl Int, 2014, 27(11): 1109-1117. DOI: 10.1111/tri.12374.
    [47]
    AROSIO P, INGRASSIA R, CAVADINI P. Ferritins: a family of molecules for iron storage, antioxidation and more[J]. Biochim Biophys Acta, 2009, 1790(7): 589-599. DOI: 10.1016/j.bbagen.2008.09.004.
    [48]
    THIJSSEN DHJ, BRUNO RM, VAN MIL ACCM, et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans[J]. Eur Heart J, 2019, 40(30): 2534-2547. DOI: 10.1093/eurheartj/ehz350.
    [49]
    JUNARTA J, HOJS N, RAMPHUL R, et al. Progression of endothelial dysfunction, atherosclerosis, and arterial stiffness in stable kidney transplant patients: a pilot study[J]. BMC Cardiovasc Disord, 2020, 20(1): 6. DOI: 10.1186/s12872-019-01309-y.
    [50]
    SASAKI M, NONOSHITA Y, KAJIYA T, et al. Characteristic analysis of trigonelline contained in raphanus sativus cv. Sakurajima daikon and results from the first trial examining its vasodilator properties in humans[J]. Nutrients, 2020, 12(6): 1872. DOI: 10.3390/nu12061872.
    [51]
    SZYMCZAK M, KLUZ J, MAŁECKI R, et al. Effect of immunosuppressive treatment on carotid atherosclerosis in renal transplant recipients[J]. Transplant Proc, 2016, 48(5): 1626-1629. DOI: 10.1016/j.transproceed.2016.03.005.
    [52]
    KURODA R, KAZUMURA K, USHIKATA M, et al. Elucidating the improvement in vascular endothelial function from Sakurajima daikon and its mechanism of action: a comparative study with raphanus sativus[J]. J Agric Food Chem, 2018, 66(33): 8714-8721. DOI: 10.1021/acs.jafc.8b01750.
    [53]
    FAHR A. Cyclosporin clinical pharmacokinetics[J]. Clin Pharmacokinet, 1993, 24(6): 472-495. DOI: 10.2165/ 00003088-199324060-00004.
    [54]
    AL-JENOOBI FI, ALAM MA, ALKHARFY KM, et al. Pharmacokinetic interaction studies of fenugreek with CYP3A substrates cyclosporine and carbamazepine[J]. Eur J Drug Metab Pharmacokinet, 2014, 39(2): 147-153. DOI: 10.1007/s13318-013-0149-6.
    [55]
    MIGLIOZZI DR, ASAL NJ. Clinical controversy in transplantation: tacrolimus versus cyclosporine in statin drug interactions[J]. Ann Pharmacother, 2020, 54(2): 171-177. DOI: 10.1177/1060028019871891.
    [56]
    ECKARDT KU, KASISKE BL. Foreword[J]. Kidney Int, 2009, 76113: S1-S2. DOI: 10.1038/ki.2009.188.
    [57]
    RATHI A, ISHAQ M, NAJMI AK, et al. Trigonelline demonstrated ameliorative effects in dexamethasone induced osteoporotic rats[J]. Drug Res (Stuttg), 2020, 70(6): 257-264. DOI: 10.1055/a-1147-5724.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (378) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return