Volume 12 Issue 3
May  2021
Turn off MathJax
Article Contents
Yang Jijian, Huang Qingxian, Chen Li. Research progress on islet cell encapsulation technology[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 336-343. doi: 10.3969/j.issn.1674-7445.2021.03.013
Citation: Yang Jijian, Huang Qingxian, Chen Li. Research progress on islet cell encapsulation technology[J]. ORGAN TRANSPLANTATION, 2021, 12(3): 336-343. doi: 10.3969/j.issn.1674-7445.2021.03.013

Research progress on islet cell encapsulation technology

doi: 10.3969/j.issn.1674-7445.2021.03.013
More Information
  • Corresponding author: Chen Li, Email: chenli3@medmail.com.cn
  • Received Date: 2021-01-12
    Available Online: 2021-05-19
  • Publish Date: 2021-05-15
  • The incidence of diabetes mellitus tends to increase, and clinical treatment is extremely challenging. Although drugs exert certain therapeutic effect on reducing blood glucose level, it remains impossible to achieve clinical cure of type 1 diabetes mellitus with a risk of blood glucose fluctuations. Islet cell transplantation is one of the efficacious methods to solve the problem of blood glucose fluctuation caused by insulin injection. However, there are several problems in the clinical practice of islet cell transplantation, including long time use of immunosuppressants in recipients and massive loss of pancreatic islet cells after transplantation, which limit its wide application in clinical practice. Islet cell encapsulation technology can reduce the loss of islet cells and decrease or eliminate the rejection, which is a key link to improve the survival of islet cells. In this article, the development course of islet cell encapsulation technology was briefly reviewed, the challenges in different islet cell encapsulation technologies were analyzed and subsequent research on this technology was projected, aiming to provide reference for promoting the development of islet cell.

     

  • loading
  • [1]
    ROEP BO, THOMAIDOU S, VAN TIENHOVEN R, et al. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?)[J]. Nat Rev Endocrinol, 2020, 17(3): 150-161. DOI: 10.1038/s41574-020-00443-4.
    [2]
    SKRZYPEK K, GROOT NIBBELINK M, VAN LENTE J, et al. Pancreatic islet macroencapsulation using microwell porous membranes[J]. Sci Rep, 2017, 7(1): 9186. DOI: 10.1038/s41598-017-09647-7.
    [3]
    LIPMAN TH, SMITH JA, HAWKES CP. Community health workers and the care of children with type 1 diabetes[J]. J Pediatr Nurs, 2019, 49: 111-112. DOI: 10.1016/j.pedn.2019.08.014.
    [4]
    TAMBURRINI R, ODORICO JS. Pancreas transplant versus islet transplant versus insulin pump therapy: in which patients and when?[J] Curr Opin Organ Transplant, 2021, 26(2): 176-183. DOI: 10.1097/MOT.0000000000000857.
    [5]
    JENSEN MH, DETHLEFSEN C, VESTERGAARD P, et al. Prediction of nocturnal hypoglycemia from continuous glucose monitoring data in people with type 1 diabetes: a proof-of-concept study[J]. J Diabetes Sci Technol, 2020, 14(2): 250-256. DOI: 10.1177/1932296819868727.
    [6]
    JAHANSOUZ C, KUMER SC, ELLENBOGEN M, et al. Evolution of β-cell replacement therapy in diabetes mellitus: pancreas transplantation[J]. Diabetes Technol Ther, 2011, 13(3): 395-418. DOI: 10.1089/dia.2010.0133.
    [7]
    TAKAKI T, SHIMODA M. Pancreatic islet transplantation: toward definitive treatment for diabetes mellitus[J]. Glob Health Med, 2020, 2(4): 200-211. DOI: 10.35772/ghm.2020.01057.
    [8]
    TRIOLO TM, BELLIN MD. Lessons from human islet transplantation inform stem cell-based approaches in the treatment of diabetes[J]. Front Endocrinol (Lausanne), 2021, 12: 636824. DOI: 10.3389/fendo.2021.636824.
    [9]
    SHAPIRO AM, LAKEY JR, RYAN EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4): 230-238. DOI: 10.1056/NEJM200007273430401.
    [10]
    VANTYGHEM MC, CHETBOUN M, GMYR V, et al. Ten-year outcome of islet alone or islet after kidney transplantation in type 1 diabetes: a prospective parallel-arm cohort study[J]. Diabetes Care, 2019, 42(11): 2042-2049. DOI: 10.2337/dc19-0401.
    [11]
    DESAI T, SHEA LD. Advances in islet encapsulation technologies[J]. Nat Rev Drug Discov, 2017, 16(5): 338-350. DOI: 10.1038/nrd.2016.232.
    [12]
    SMOOD B, BOTTINO R, HARA H, et al. Is the renal subcapsular space the preferred site for clinical porcine islet xenotransplantation? review article[J]. Int J Surg, 2019, 69: 100-107. DOI: 10.1016/j.ijsu.2019.07.032.
    [13]
    RODRIGUEZ-RODRIGUEZ AE, DONATE-CORREA J, ROVIRA J, et al. Inhibition of the mTOR pathway: a new mechanism of β cell toxicity induced by tacrolimus[J]. Am J Transplant, 2019, 19(12): 3240-3249. DOI: 10.1111/ajt.15483.
    [14]
    ARDESTANI A, LUPSE B, KIDO Y, et al. mTORC1 signaling: a double-edged sword in diabetic β cells[J]. Cell Metab, 2018, 27(2): 314-331. DOI: 10.1016/j.cmet.2017.11. 004.
    [15]
    AHMED SH, BIDDLE K, AUGUSTINE T, et al. Post-transplantation diabetes mellitus[J]. Diabetes Ther, 2020, 11(4): 779-801. DOI: 10.1007/s13300-020-00790-5.
    [16]
    KORSGREN O. Islet encapsulation: physiological possibilities and limitations[J]. Diabetes, 2017, 66(7): 1748-1754. DOI: 10.2337/db17-0065.
    [17]
    ASHIMOVA A, YEGOROV S, NEGMETZHANOV B, et al. Cell encapsulation within alginate microcapsules: immunological challenges and outlook[J]. Front Bioeng Biotechnol, 2019, 7: 380. DOI: 10.3389/fbioe.2019.00380.
    [18]
    FOSTER GA, GARCÍA AJ. Bio-synthetic materials for immunomodulation of islet transplants[J]. Adv Drug Deliv Rev, 2017, 114: 266-271. DOI: 10.1016/j.addr.2017.05.012.
    [19]
    KOTHALE D, VERMA U, DEWANGAN N, et al. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications[J]. Curr Drug Deliv, 2020, 17(9): 755-775. DOI: 10.2174/1567201817666200810110226.
    [20]
    DHARANI SR, SRINIVASAN R, SARATH R, et al. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications[J]. Folia Microbiol (Praha), 2020, 65(6): 937-954. DOI: 10.1007/s12223-020-00802-8.
    [21]
    TAEMEH MA, SHIRAVANDI A, KORAYEM MA, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydr Polym, 2020, 228: 115419. DOI: 10.1016/j. carbpol.2019.115419.
    [22]
    DANG TT, THAI AV, COHEN J, et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug[J]. Biomaterials, 2013, 34(23): 5792-5801. DOI: 10.1016/j.biomaterials.2013.04.016.
    [23]
    RICCI M, BLASI P, GIOVAGNOLI S, et al. Ketoprofen controlled release from composite microcapsules for cell encapsulation: effect on post-transplant acute inflammation[J]. J Control Release, 2005, 107(3): 395-407. DOI: 10.1016/j.jconrel.2005.06.023.
    [24]
    KIM MJ, PARK HS, KIM JW, et al. Suppression of fibrotic reactions of chitosan-alginate microcapsules containing porcine islets by dexamethasone surface coating[J]. Endocrinol Metab (Seoul), 2021, 36(1): 146-156. DOI: 10.3803/EnM.2021.879.
    [25]
    ZHENG J, XIE H, YU W, et al. Enhancement of surface graft density of MPEG on alginate/chitosan hydrogel microcapsules for protein repellency[J]. Langmuir, 2012, 28(37): 13261-13273. DOI: 10.1021/la302615t.
    [26]
    HILLBERG AL, OUDSHOORN M, LAM JB, et al. Encapsulation of porcine pancreatic islets within an immunoprotective capsule comprising methacrylated glycol chitosan and alginate[J]. J Biomed Mater Res B Appl Biomater, 2015, 103(3): 503-518. DOI: 10.1002/jbm.b.33185.
    [27]
    CHEN T, YUAN J, DUNCANSON S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3): 618-627. DOI: 10.1111/ajt.13049.
    [28]
    VEGAS AJ, VEISEH O, DOLOFF JC, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates[J]. Nat Biotechnol, 2016, 34(3): 345-352. DOI: 10.1038/nbt.3462.
    [29]
    VEGAS AJ, VEISEH O, GÜRTLER M, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice[J]. Nat Med, 2016, 22(3): 306-311. DOI: 10.1038/nm.4030.
    [30]
    STABLER CL, LI Y, STEWART JM, et al. Engineering immunomodulatory biomaterials for type 1 diabetes[J]. Nat Rev Mater, 2019, 4(6): 429-450. DOI: 10.1038/s41578-019-0112-5.
    [31]
    HILL RS, CRUISE GM, HAGER SR, et al. Immunoisolation of adult porcine islets for the treatment of diabetes mellitus. the use of photopolymerizable polyethylene glycol in the conformal coating of mass-isolated porcine islets[J]. Ann N Y Acad Sci, 1997, 831: 332-343. DOI: 10.1111/j.1749-6632.1997.tb52208.x.
    [32]
    PHELPS EA, ENEMCHUKWU NO, FIORE VF, et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery[J]. Adv Mater, 2012, 24(1): 64-70. DOI: 10.1002/adma.201103574.
    [33]
    WILSON JT, CUI W, CHAIKOF EL. Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation[J]. Nano Lett, 2008, 8(7): 1940-1948. DOI: 10.1021/nl080694q.
    [34]
    SCHARP DW, MARCHETTI P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution[J]. Adv Drug Deliv Rev, 2014, 67/68: 35-73. DOI: 10.1016/j.addr.2013.07.018.
    [35]
    VAITHILINGAM V, BAL S, TUCH BE. Encapsulated islet transplantation: where do we stand?[J]. Rev Diabet Stud, 2017, 14(1): 51-78. DOI: 10.1900/RDS.2017.14.51.
    [36]
    QI M. Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus[J]. Adv Med, 2014: 429710. DOI: 10.1155/2014/429710.
    [37]
    PÉREZ-LUNA VH, GONZÁLEZ-REYNOSO O. Encapsulation of biological agents in hydrogels for therapeutic applications[J]. Gels, 2018, 4(3): 61. DOI: 10.3390/gels4030061.
    [38]
    ESPONA-NOGUERA A, ETXEBARRIA-ELEZGARAI J, SAENZ DEL BURGO L, et al. Type 1 diabetes mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets[J]. Int J Pharm, 2019, 560: 65-77. DOI: 10.1016/j.ijpharm.2019.01.058.
    [39]
    LIM F, SUN AM. Microencapsulated islets as bioartificial endocrine pancreas[J]. Science, 1980, 210(4472): 908-910. DOI: 10.1126/science.6776628.
    [40]
    FARINA M, ALEXANDER JF, THEKKEDATH U, et al. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond[J]. Adv Drug Deliv Rev, 2019, 139: 92-115. DOI: 10.1016/j.addr.2018.04.018.
    [41]
    MØRCH YA, DONATI I, STRAND BL, et al. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads[J]. Biomacromolecules, 2006, 7(5): 1471-1480. DOI: 10.1021/bm060010d.
    [42]
    OMER A, DUVIVIER-KALI VF, TRIVEDI N, et al. Survival and maturation of microencapsulated porcine neonatal pancreatic cell clusters transplanted into immunocompetent diabetic mice[J]. Diabetes, 2003, 52(1): 69-75. DOI: 10.2337/diabetes.52.1.69.
    [43]
    TAN PL. Company profile: tissue regeneration for diabetes and neurological diseases at Living Cell Technologies[J]. Regen Med, 2010, 5(2): 181-187. DOI: 10.2217/rme.10.4.
    [44]
    PAPAS KK, DE LEON H, SUSZYNSKI TM, et al. Oxygenation strategies for encapsulated islet and beta cell transplants[J]. Adv Drug Deliv Rev, 2019, 139: 139-156. DOI: 10.1016/j.addr.2019.05.002.
    [45]
    WHITE AM, SHAMUL JG, XU J, et al. Engineering strategies to improve islet transplantation for type 1 diabetes therapy[J]. ACS Biomater Sci Eng, 2020, 6(5): 2543-2562. DOI: 10.1021/acsbiomaterials.9b01406.
    [46]
    BARKAI U, ROTEM A, DE VOS P. Survival of encapsulated islets: more than a membrane story[J]. World J Transplant, 2016, 6(1): 69-90. DOI: 10.5500/wjt.v6.i1.69.
    [47]
    DIMITRIOGLOU N, KANELLI M, PAPAGEORGIOU E, et al. Paving the way for successful islet encapsulation[J]. Drug Discov Today, 2019, 24(3): 737-748. DOI: 10.1016/j.drudis.2019.01.020.
    [48]
    DUFRANE D, GOEBBELS RM, GIANELLO P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression[J]. Transplantation, 2010, 90(10): 1054-1062. DOI: 10.1097/TP.0b013e3181f6e267.
    [49]
    LUDWIG B, REICHEL A, STEFFEN A, et al. Transplantation of human islets without immunosuppression[J]. Proc Natl Acad Sci U S A, 2013, 110(47): 19054-19058. DOI: 10.1073/pnas.1317561110.
    [50]
    NAGAYA M, HASEGAWA K, UCHIKURA A, et al. Feasibility of large experimental animal models in testing novel therapeutic strategies for diabetes[J]. World J Diabetes, 2021, 12(4): 306-330. DOI: 10.4239/wjd.v12.i4.306.
    [51]
    CARLSSON PO, ESPES D, SEDIGH A, et al. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus[J]. Am J Transplant, 2018, 18(7): 1735-1744. DOI: 10.1111/ajt.14642.
    [52]
    GHOLIPOURMALEKABADI M, ZHAO S, HARRISON BS, et al. Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering?[J]. Trends Biotechnol, 2016, 34(12): 1010-1021. DOI: 10.1016/j.tibtech.2016.05.012.
    [53]
    BERMAN DM, MOLANO RD, FOTINO C, et al. Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold[J]. Diabetes, 2016, 65(5): 1350-1361. DOI: 10.2337/db15-1525.
    [54]
    BAIDAL DA, RICORDI C, BERMAN DM, et al. Bioengineering of an intraabdominal endocrine pancreas[J]. N Engl J Med, 2017, 376(19): 1887-1889. DOI: 10.1056/NEJMc1613959.
    [55]
    AN D, CHIU A, FLANDERS JA, et al. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes[J]. Proc Natl Acad Sci U S A, 2018, 115(2): E263-E272. DOI: 10.1073/pnas.1708806115.
    [56]
    WEAVER JD, HEADEN DM, HUNCKLER MD, et al. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation[J]. Biomaterials, 2018, 172: 54-65. DOI: 10.1016/j.biomaterials. 2018.04.047.
    [57]
    PELLEGRINI S, PIEMONTI L, SORDI V. Pluripotent stem cell replacement approaches to treat type 1 diabetes[J]. Curr Opin Pharmacol, 2018, 43: 20-26. DOI: 10.1016/j.coph.2018.07.007.
    [58]
    WANG Y, LEI T, WEI L, et al. Xenotransplantation in China: present status[J]. Xenotransplantation, 2019, 26(1): e12490. DOI: 10.1111/xen.12490.
    [59]
    VERES A, FAUST AL, BUSHNELL HL, et al. Charting cellular identity during human in vitro β-cell differentiation[J]. Nature, 2019, 569(7756): 368-373. DOI: 10.1038/s41586-019-1168-5.
    [60]
    LEGØY TA, VETHE H, ABADPOUR S, et al. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling[J]. Sci Rep, 2020, 10(1): 414. DOI: 10.1038/s41598-019-57305-x.
    [61]
    MILLMAN JR, XIE C, VAN DERVORT A, et al. Generation of stem cell-derived β-cells from patients with type 1 diabetes[J]. Nat Commun, 2016, 7: 11463. DOI: 10.1038/ncomms11463.
    [62]
    CHEN S, DU K, ZOU C. Current progress in stem cell therapy for type 1 diabetes mellitus[J]. Stem Cell Res Ther, 2020, 11(1): 275. DOI: 10.1186/s13287-020-01793-6.
    [63]
    ELEUTERI S, FIERABRACCI A. Insights into the secretome of mesenchymal stem cells and its potential applications[J]. Int J Mol Sci, 2019, 20(18): 4597. DOI: 10.3390/ijms20184597.
    [64]
    VAITHILINGAM V, EVANS MDM, LEWY DM, et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted[J]. Sci Rep, 2017, 7(1): 10059. DOI: 10.1038/s41598-017-10359-1.
    [65]
    MOCHIZUKI Y, KOGAWA R, TAKEGAMI R, et al. Co-microencapsulation of islets and MSC cellsaics, mosaic-like aggregates of MSCs and recombinant peptide pieces, and therapeutic effects of their subcutaneous transplantation on diabetes[J]. Biomedicines, 2020, 8(9): 318. DOI: 10.3390/biomedicines8090318.
    [66]
    GROOT NIBBELINK M, SKRZYPEK K, KARBAAT L, et al. An important step towards a prevascularized islet microencapsulation device: in vivo prevascularization by combination of mesenchymal stem cells on micropatterned membranes[J]. J Mater Sci Mater Med, 2018, 29(11): 174. DOI: 10.1007/s10856-018-6178-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (583) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return