Volume 11 Issue 6
Jan.  2021
Turn off MathJax
Article Contents
Qiao Yuxi, Wang Bo, Xue Wujun, et al. Advancement of research on ferroptosis in acute kidney injury[J]. ORGAN TRANSPLANTATION, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004
Citation: Qiao Yuxi, Wang Bo, Xue Wujun, et al. Advancement of research on ferroptosis in acute kidney injury[J]. ORGAN TRANSPLANTATION, 2020, 11(6): 671-676. doi: 10.3969/j.issn.1674-7445.2020.06.004

Advancement of research on ferroptosis in acute kidney injury

doi: 10.3969/j.issn.1674-7445.2020.06.004
More Information
  • Corresponding author: Ding Chenguang, Email: doctor_ding@xjtu.edu.cn
  • Received Date: 2020-08-20
    Available Online: 2021-01-19
  • Publish Date: 2021-01-19
  • Acute kidney injury (AKI) is often associated with organ donation and renal transplantation, which leads to an increase of fatality rate, hospitalization time and hospitalization costs. In recent years, studies have shown that ferroptosis is closely related to AKI, but the exact molecular biological mechanism has not been clarified, which need more research. In this article, the role of ferroptosis in AKI was reviewed from the aspects of ferroptosis related biomarkers and biological reactions, in order to find a new possible direction for the prevention and treatmentof AKI.

     

  • loading
  • [1]
    ZUK A, BONVENTRE JV. Acute kidney injury[J]. Annu Rev Med, 2016, 67:293-307. DOI: 10.1146/annurev-med-050214-013407.
    [2]
    MEHTA RL, CERDÁ J, BURDMANN EA, et al. International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology[J]. Lancet, 2015, 385(9987):2616-2643. DOI: 10.1016/S0140-6736(15)60126-X.
    [3]
    LINKERMANN A, CHEN G, DONG G, et al. Regulated cell death in AKI[J]. J Am Soc Nephrol, 2014, 25(12):2689-2701. DOI: 10.1681/ASN.2014030262.
    [4]
    PASPARAKIS M, VANDENABEELE P. Necroptosis and its role in inflammation[J]. Nature, 2015, 517(7534):311-320. DOI: 10.1038/nature14191.
    [5]
    DIXON SJ, LEMBERG KM, LAMPRECHT MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. DOI: 10.1016/j.cell.2012.03.042.
    [6]
    CONRAD M, ANGELI JP, VANDENABEELE P, et al. Regulated necrosis: disease relevance and therapeutic opportunities[J]. Nat Rev Drug Discov, 2016, 15(5):348-366. DOI: 10.1038/nrd.2015.6.
    [7]
    LINKERMANN A, BRÄSEN JH, DARDING M, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury[J]. Proc Natl Acad Sci U S A, 2013, 110(29):12024-12029. DOI: 10.1073/pnas.1305538110.
    [8]
    SCINDIA Y, DEY P, THIRUNAGARI A, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis[J]. J Am Soc Nephrol, 2015, 26(11):2800-2814. DOI: 10.1681/ASN.2014101037.
    [9]
    TONNUS W, LINKERMANN A. The in vivo evidence for regulated necrosis[J]. Immunol Rev, 2017, 277(1):128-149. DOI: 10.1111/imr.12551.
    [10]
    BRIGELIUS-FLOHÉ R, MAIORINO M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5): 3289-3303. DOI: 10.1016/j.bbagen.2012.11.020.
    [11]
    YANG WS, SRIRAMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2):317-331. DOI: 10.1016/j.cell.2013.12.010.
    [12]
    FRIEDMANN ANGELI JP, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12):1180-1191. DOI: 10.1038/ncb3064.
    [13]
    SHIMADA K, SKOUTA R, KAPLAN A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7):497-503. DOI: 10.1038/nchembio.2079.
    [14]
    GAO M, MONIAN P, QUADRI N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2):298-308. DOI: 10.1016/j.molcel.2015.06.011.
    [15]
    HU Z, ZHANG H, YI B, et al. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis[J]. Cell Death Dis, 2020, 11(1):73. DOI: 10.1038/s41419-020-2256-z.
    [16]
    BRIDGES RJ, NATALE NR, PATEL SA. System xc- cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS[J]. Br J Pharmacol, 2012, 165(1):20-34. DOI: 10.1111/j.1476-5381.2011.01480.x.
    [17]
    BURDO J, DARGUSCH R, SCHUBERT D. Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum[J]. J Histochem Cytochem, 2006, 54(5):549-557. doi: 10.1369/jhc.5A6840.2006
    [18]
    SKOUTA R, DIXON SJ, WANG J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models[J]. J Am Chem Soc, 2014, 136(12):4551-4556. DOI: 10.1021/ja411006a.
    [19]
    ZHANG D, LIU Y, WEI Q, et al. Tubular p53 regulates multiple genes to mediate AKI[J]. J Am Soc Nephrol, 2014, 25(10):2278-2289. DOI: 10.1681/ASN.2013080902.
    [20]
    MOLITORIS BA, DAGHER PC, SANDOVAL RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury[J]. J Am Soc Nephrol, 2009, 20(8):1754-1764. DOI: 10.1681/ASN.2008111204.
    [21]
    CABANTCHIK ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology[J]. Front Pharmacol, 2014, 5:45. DOI: 10.3389/fphar.2014.00045.
    [22]
    DIXON SJ, STOCKWELL BR. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10(1):9-17. DOI: 10.1038/nchembio.1416.
    [23]
    DOLL S, CONRAD M. Iron and ferroptosis: a still ill-defined liaison[J]. IUBMB Life, 2017, 69(6):423-434. DOI: 10.1002/iub.1616.
    [24]
    CLOONAN SM, GLASS K, LAUCHO-CONTRERAS ME, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice[J]. Nat Med, 2016, 22(2):163-174. DOI: 10.1038/nm.4021.
    [25]
    BOSCH X, POCH E, GRAU JM. Rhabdomyolysis and acute kidney injury[J]. N Engl J Med, 2009, 361(1):62-72. DOI: 10.1056/NEJMra0801327.
    [26]
    BOUTAUD O, ROBERTS LJ 2ND. Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure[J]. Free Radic Biol Med, 2011, 51(5):1062-1067. DOI: 10.1016/j.freeradbiomed.2010.10.704.
    [27]
    SOUPENE E, KUYPERS FA. Mammalian long-chain acyl-CoA synthetases[J]. Exp Biol Med (Maywood), 2008, 233(5):507-521. DOI: 10.3181/0710-MR-287.
    [28]
    INGÓLFSSON HI, MELO MN, VAN EERDEN FJ, et al. Lipid organization of the plasma membrane[J]. J Am Chem Soc, 2014, 136(41):14554-14559. DOI: 10.1021/ja507832e.
    [29]
    WENZEL SE, TYURINA YY, ZHAO J, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171(3):628-641. DOI: 10.1016/j.cell.2017.09.044.
    [30]
    VAN DER PAAL J, NEYTS EC, VERLACKT CCW, et al. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress[J]. Chem Sci, 2016, 7(1):489-498. DOI: 10.1039/c5sc02311d.
    [31]
    DIXON SJ, WINTER GE, MUSAVI LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10(7):1604-1609. DOI: 10.1021/acschembio.5b00245.
    [32]
    DOLL S, PRONETH B, TYURINA YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. DOI: 10.1038/nchembio.2239.
    [33]
    YUAN H, LI X, ZHANG X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478(3):1338-1343. DOI: 10.1016/j.bbrc.2016.08.124.
    [34]
    KAJARABILLE N, LATUNDE-DADA GO. Programmed cell-death by ferroptosis: antioxidants as mitigators[J]. Int J Mol Sci, 2019, 20(19):4968. DOI: 10.3390/ijms 20194968.
    [35]
    ANGELI JPF, SHAH R, PRATT DA, et al. Ferroptosis inhibition: mechanisms and opportunities[J]. Trends Pharmacol Sci, 2017, 38(5):489-498. DOI: 10.1016/j.tips.2017.02.005.
    [36]
    LINKERMANN A, SKOUTA R, HIMMERKUS N, et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111(47):16836-16841. DOI: 10.1073/pnas.1415518111.
    [37]
    LINKERMANN A, STOCKWELL BR, KRAUTWALD S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure[J]. Nat Rev Immunol, 2014, 14(11):759-767. DOI: 10.1038/nri3743.
    [38]
    MÜLLER T, DEWITZ C, SCHMITZ J, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure[J]. Cell Mol Life Sci, 2017, 74(19):3631-3645. DOI: 10.1007/s00018-017-2547-4.
    [39]
    MANCIAS JD, WANG X, GYGI SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498): 105-109. DOI: 10.1038/nature13148.
    [40]
    HOU W, XIE Y, SONG X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8):1425-1428. DOI: 10.1080/ 15548627.2016.1187366.
    [41]
    MASALDAN S, CLATWORTHY SAS, GAMELL C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox Biol, 2018, 14:100-115. DOI: 10.1016/j.redox. 2017.08.015.
    [42]
    PRONETH B, CONRAD M. Ferroptosis and necroinflammation, a yet poorly explored link[J]. Cell Death Differ, 2019, 26(1):14-24. DOI: 10.1038/s41418-018-0173-9.
    [43]
    LI W, FENG G, GAUTHIER JM, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129(6):2293-2304. DOI: 10.1172/JCI126428.
    [44]
    SU L, JIANG X, YANG C, et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury[J]. J Biol Chem, 2019, 294(50):19395-19404. DOI: 10.1074/jbc.RA119.010949.
    [45]
    LOBODA A, DAMULEWICZ M, PYZA E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17):3221-3247. DOI: 10.1007/s00018-016-2223-0.
    [46]
    FURFARO AL, TRAVERSO N, DOMENICOTTI C, et al. The Nrf2/HO-1 axis in cancer cell growth and chemoresistance[J]. Oxid Med Cell Longev, 2016:1958174. DOI: 10.1155/2016/1958174.
    [47]
    SUN X, OU Z, CHEN R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1):173-184. DOI: 10.1002/hep.28251.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (285) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return