Volume 11 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Cao Yirui, Jia Yichen. Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018
Citation: Cao Yirui, Jia Yichen. Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 635-645. doi: 10.3969/j.issn.1674-7445.2020.05.018

Research progress on pharmacokinetics of mycophenolic acid drugs in organ transplant recipients

doi: 10.3969/j.issn.1674-7445.2020.05.018
  • Received Date: 2020-06-13
    Available Online: 2021-01-19
  • Publish Date: 2020-09-15
  • Mycophenolic acid (MPA) drugs are common immunosuppressant for organ transplant recipients, which possesses high immunosuppressive effect. However, insufficient or excessive dosage of MPA is not conducive to clinical prognosis of the recipients. Hence, it is necessary to accurately control the dosage of MPA. The metabolism of MPA significantly differs among individuals. The metabolic pattern and monitoring method of these drugs are of important significance in clinic. In this article, the research progresses on the metabolism of MPA drugs in organ transplant recipients in recent five years were reviewed, the main results and direction of drug metabolism and monitoring methods were summarized, and the researches on the metabolism of MPA drugs in organ transplantation were briefly reviewed and prospected.

     

  • loading
  • [1]
    IIDA M, FUKUDA T, UCHIDA N, et al. Mycophenolate mofetil use after unrelated hematopoietic stem cell transplantation for prophylaxis and treatment of graft-vs.- host disease in adult patients in Japan[J]. Clin Transplant, 2014, 28(9):980-989. DOI: 10.1111/ctr.12405.
    [2]
    BUDDE K, GLANDER P, KRÄMER BK, et al. Conversion from mycophenolate mofetil to entericcoated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes[J]. Transplantation, 2007, 83(4):417-424. DOI:10.1097/01. tp.0000251969.72691.ea.
    [3]
    NEUBERGER M, SOMMERER C, BÖHNISCH S, et al.Effect of mycophenolic acid on inosine monophosphate dehydrogenase (IMPDH) activity in liver transplant patients[J]. Clin Res Hepatol Gastroenterol, 2020, DOI: 10.1016/j.clinre.2019.12.001[Epub ahead of print].
    [4]
    LANGMAN LJ, LEGATT DF, HALLORAN PF, et al. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients[J]. Transplantation, 1996, 62(5):666-672. DOI: 10.1097/00007890-199609150-00022.
    [5]
    BULLINGHAM R, MONROE S, NICHOLLS A, et al. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration[J]. J Clin Pharmacol, 1996, 36(4):315-324. DOI: 10.1002/j.1552-4604.1996.tb04207.x.
    [6]
    MUNTEAN A, LUCAN M. Immunosuppression in kidney transplantation[J]. Clujul Med, 2013, 86(3):177- 180. https://www.researchgate.net/publication/285733994_Immunosuppression_in_kidney_transplantation
    [7]
    BENTATA Y. Mycophenolates: the latest modern and potent immunosuppressive drugs in adult kidney transplantation: what we should know about them?[J]. Artif Organs, 2020, 44(6):561-576. DOI: 10.1111/aor.13623.
    [8]
    BUDDE K, CURTIS J, KNOLL G, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study[J]. Am J Transplant, 2004, 4(2):237-243. DOI: 10.1046/j.1600-6143.2003.00321.x.
    [9]
    QIAO LW, QU QS, JIANG X. Evaluation of tolerance and safety of conversion from mycophenolate mofetil to entericcoated mycophenolic acid in renal transplant recipients[J]. J Biol Regul Homeost Agents, 2017, 31(1):141-146. https://www.researchgate.net/publication/320871923_Evaluation_of_tolerance_and_safety_of_conversion_from_mycophenolate_mofetil_to_enteric-coated_mycophenolic_acid_in_renal_transplant_recipients
    [10]
    COOPER M, SALVADORI M, BUDDE K, et al. Entericcoated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing[J]. Transplant Rev (Orlando), 2012, 26(4):233-240. DOI:10.1016/j.trre. 2012.02.001.
    [11]
    KIANG TKL, ENSOM MHH. Population pharmacokinetics of mycophenolic acid: an update[J]. Clin Pharmacokinet, 2018, 57(5):547-558. DOI: 10.1007/s40262-017-0593-6.
    [12]
    SALVADORI M, HOLZER H, DE MATTOS A, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients[J]. Am J Transplant, 2004, 4(2):231- 236. DOI: 10.1046/j.1600-6143.2003.00337.x.
    [13]
    STAATZ CE, TETT SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update[J]. Arch Toxicol, 2014, 88(7):1351-1389. DOI: 10.1007/s00204-014-1247-1.
    [14]
    ZHANG J, JIA M, ZUO L, et al. Nonlinear relationship between enteric-coated mycophenolate sodium dose and mycophenolic acid exposure in Han kidney transplantation recipients[J]. Acta Pharm Sin B, 2017, 7(3):347-352. DOI: 10.1016/j.apsb.2016.11.003.
    [15]
    ETTENGER R, BARTOSH S, CHOI L, et al. Pharmacokinetics of enteric-coated mycophenolate sodium in stable pediatric renal transplant recipients[J]. Pediatr Transplant, 2005, 9(6):780-787. DOI:10.1111/ j.1399-3046.2005.00386.x.
    [16]
    王琴, 杨春兰, 冯丽娟, 等.基因多态性与器官移植受者霉酚酸个体化治疗研究进展[J].安徽医科大学学报, 2018, 53(1):161-166. DOI:10.19405/j.cnki.issn1000- 1492.2018.01.035.

    WANG Q, YANG CL, FENG LJ, et al. Research progress of gene polymorphism and individualized mycophenolic acid therapy in organ transplant recipients [J].Acta Univ Med Anhui, 2018, 53(1):161-166. DOI:10.19405/j.cnki. issn1000-1492.2018.01.035
    [17]
    DE JONGE H, NAESENS M, KUYPERS DR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation[J]. Ther Drug Monit, 2009, 31(4):416-435. DOI: 10.1097/FTD.0b013e3181aa36cd.
    [18]
    LAMBA V, SANGKUHL K, SANGHAVI K, et al. PharmGKB summary: mycophenolic acid pathway[J]. Pharmacogenet Genomics, 2014, 24(1):73-79. DOI:10.1097/ FPC.0000000000000010.
    [19]
    ZHANG J, SUN Z, ZHU Z, et al. Pharmacokinetics of mycophenolate mofetil and development of limited sampling strategy in early kidney transplant recipients[J]. Front Pharmacol, 2018, 9:908. DOI: 10.3389/fphar.2018.00908.
    [20]
    YU ZC, ZHOU PJ, WANG XH, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients[J]. Acta Pharmacol Sin, 2017, 38(11):1566-1579. DOI: 10.1038/aps.2017.115.
    [21]
    TETT SE, SAINT-MARCOUX F, STAATZ CE, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure[J]. Transplant Rev (Orlando), 2011, 25(2):47-57. DOI:10.1016/ j.trre.2010.06.001.
    [22]
    NAITO T, MINO Y, OTSUKA A, et al. Impact of calcineurin inhibitors on urinary excretion of mycophenolic acid and its glucuronide in kidney transplant recipients[J]. J Clin Pharmacol, 2009, 49(6):710-718. DOI: 10.1177/0091270009335003.
    [23]
    WANG XX, FENG MR, NGUYEN H, et al. Population pharmacokinetics of mycophenolic acid in lung transplant recipients with and without cystic fibrosis[J]. Eur J Clin Pharmacol, 2015, 71(6):673-679. DOI:10.1007/s00228- 015-1854-7.
    [24]
    JUNG HY, LEE S, JEON Y, et al. Mycophenolic acid trough concentration and dose are associated with hematologic abnormalities but not rejection in kidney transplant recipients[J]. J Korean Med Sci, 2020, 35(24):e185. DOI: 10.3346/jkms.2020.35.e185.
    [25]
    CHAABANE A, AOUAM K, BEN FREDJ N, et al. Limited sampling strategy of mycophenolic acid in adult kidney transplant recipients: influence of the posttransplant period and the pharmacokinetic profile[J]. J Clin Pharmacol, 2013, 53(9):925-933. DOI:10.1002/ jcph.125.
    [26]
    HAN N, YUN HY, KIM IW, et al. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients[J]. Eur J Clin Pharmacol, 2014, 70(10):1211-1219. DOI: 10.1007/s00228-014-1728-4.
    [27]
    JIA Y, PENG B, LI L, et al. Estimation of mycophenolic acid area under the curve with limited-sampling strategy in Chinese renal transplant recipients receiving enteric-coated mycophenolate sodium[J]. Ther Drug Monit, 2017, 39(1):29-36. DOI:10.1097/ FTD.0000000000000360.
    [28]
    JIA Y, WANG R, LI L, et al. Sites of gastrointestinal lesion induced by mycophenolate mofetil: a comparison with enteric-coated mycophenolate sodium in rats[J]. BMC Pharmacol Toxicol, 2018, 19(1):39. DOI:10.1186/ s40360-018-0234-1.
    [29]
    ZHANG Q, TAO Y, ZHU Y, et al. Bioequivalence and pharmacokinetic comparison of two mycophenolate mofetil formulations in healthy Chinese male volunteers: an open-label, randomized-sequence, single-dose, twoway crossover study[J]. Clin Ther, 2010, 32(1):171-178. DOI: 10.1016/j.clinthera.2010.01.013.
    [30]
    OKOUR M, JACOBSON PA, AHMED MA, et al. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure[J]. J Clin Pharmacol, 2018, 58(5):628-639. DOI:10.1002/ jcph.1064.
    [31]
    DANOVITCH GM, GILL J, BUNNAPRADIST S. Immunosuppression of the elderly kidney transplant recipient[J]. Transplantation, 2007, 84(3):285-291. DOI: 10.1097/01.tp.0000275423.69689.dc.
    [32]
    M E I E R - K R I E S C H E H U, K A P L A N B. Immunosuppression in elderly renal transplant recipients: are current regimens too aggressive?[J]. Drugs Aging, 2001, 18(10):751-759. DOI:10.2165/00002512-200118100- 00004.
    [33]
    WANG CX, MENG FH, CHEN LZ, et al. Population pharmacokinetics of mycophenolic acid in senile Chinese kidney transplant recipients[J]. Transplant Proc, 2007, 39(5):1392-1395. DOI:10.1016/j.transproceed. 2007.02.082.
    [34]
    VELIČKOVIĆ-RADOVANOVIĆ RM, JANKOVIĆ SM, MILOVANOVIĆ JR, et al. Variability of mycophenolic acid elimination in the renal transplant recipients - population pharmacokinetic approach[J]. Ren Fail, 2015, 37(4):652-658. DOI:10.3109/088602 2X.2015.1010442.
    [35]
    BUSSALINO E, MARSANO L, PARODI A, et al. Everolimus for BKV nephropathy in kidney transplant recipients: a prospective, controlled study [J]. J Nephrol, 2020, DOI: 10.1007/s40620-020-00777-2[Epub ahead of print].
    [36]
    ROMANO P, AGENA F, DE ALMEIDA REZENDE EBNER P, et al. Longitudinal pharmacokinetics of mycophenolic acid in elderly renal transplant recipients compared to a younger control group: data from the nEverOld trial[J]. Eur J Drug Metab Pharmacokinet, 2019, 44(2):189-199. DOI: 10.1007/s13318-018-0506-6.
    [37]
    TANG JT, DE WINTER BC, HESSELINK DA, et al. The pharmacokinetics and pharmacodynamics of mycophenolate mofetil in younger and elderly renal transplant recipients[J]. Br J Clin Pharmacol, 2017, 83(4):812-822. DOI: 10.1111/bcp.13154.
    [38]
    COSSART AR, COTTRELL WN, CAMPBELL SB, et al. Characterizing the pharmacokinetics and pharmacodynamics of immunosuppressant medicines and patient outcomes in elderly renal transplant patients[J]. Transl Androl Urol, 2019, 8(Suppl 2): S198-S213. DOI: 10.21037/tau.2018.10.16.
    [39]
    MEANEY CJ, SUDCHADA P, CONSIGLIO JD, et al. Influence of calcineurin inhibitor and sex on mycophenolic acid pharmacokinetics and adverse effects post-renal transplant[J]. J Clin Pharmacol, 2019, 59(10):1351-1365. DOI: 10.1002/jcph.1428.
    [40]
    SCHWARTZ JB. The influence of sex on pharmacokinetics [J]. Clin Pharmacokinet, 2003, 42(2):107-121. DOI:10. 2165/00003088-200342020-00001.
    [41]
    BARAU C, MELLOS A, CHHUN S, et al. Pharmacokinetics of mycophenolic acid and dose optimization in children after intestinal transplantation[J]. Ther Drug Monit, 2017, 39 (1):37-42. DOI: 10.1097/FTD.0000000000000363.
    [42]
    LE MEUR Y, BORROWS R, PESCOVITZ MD, et al. Therapeutic drug monitoring of mycophenolates in kidney transplantation: report of The Transplantation Society consensus meeting[J]. Transplant Rev (Orlando), 2011, 25(2):58-64. DOI: 10.1016/j.trre.2011.01.002.
    [43]
    ALVAREZ-ELÍAS AC, YOO EC, TODOROVA EK, et al. A retrospective study on mycophenolic acid drug interactions: effect of prednisone, sirolimus, and tacrolimus with MPA[J]. Ther Drug Monit, 2017, 39(3):220-228. DOI: 10.1097/FTD.0000000000000403.
    [44]
    NOREIKAITÉ A, SAINT-MARCOUX F, MARQUET P, et al. Influence of cyclosporine and everolimus on the main mycophenolate mofetil pharmacokinetic parameters: cross-sectional study[J]. Medicine (Baltimore), 2017, 96(13):e6469. DOI: 10.1097/MD.0000000000006469.
    [45]
    MOHSIN N, AL-RAISI F, MILITSALA E, et al. Pharmacokinetics of mycophenolate mofetil in Omani patients on cyclosporine or tacrolimus[J]. Transplant Proc, 2015, 47(4):1122-1124. DOI:10.1016/ j.transproceed.2015.01.023.
    [46]
    PATEL CG, OGASAWARA K, AKHLAGHI F. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus[J]. Xenobiotica, 2013, 43(3):229-235. DOI:10. 3109/00498254.2012.713531.
    [47]
    PICARD N. The pharmacokinetic interaction between mycophenolic acid and cyclosporine revisited: a commentary on "mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus"[J]. Xenobiotica, 2013, 43(9):836- 838. DOI: 10.3109/00498254.2012.761742.
    [48]
    DETERS M, KIRCHNER G, KOAL T, et al. Influence of cyclosporine on the serum concentration and biliary excretion of mycophenolic acid and 7-O-mycophenolic acid glucuronide[J]. Ther Drug Monit, 2005, 27(2):132- 138. DOI: 10.1097/01.ftd.0000152682.13647.5e.
    [49]
    RONG Y, MAYO P, ENSOM MHH, et al. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients[J]. Clin Pharmacokinet, 2019, 58(11):1483-1495. DOI: 10.1007/s40262-019-00771-3.
    [50]
    KIRPALANI A, ROTHFELS L, SHARMA AP, et al. Nephrotic state substantially enhances apparent mycophenolic acid clearance[J]. Clin Nephrol, 2019, 91(3):162-171. DOI: 10.5414/CN109583.
    [51]
    YOSHIMURA K, YANO I, YAMAMOTO T, et al. Population pharmacokinetics and pharmacodynamics of mycophenolic acid using the prospective data in patients undergoing hematopoietic stem cell transplantation[J]. Bone Marrow Transplant, 2018, 53(1):44-51. DOI:10. 1038/bmt.2017.213.
    [52]
    ZHANG D, CHOW DS. Clinical pharmacokinetics of mycophenolic acid in hematopoietic stem cell transplantation recipients[J]. Eur J Drug Metab Pharmacokinet, 2017, 42(2):183-189. DOI:10.1007/s13318- 016-0378-6.
    [53]
    GUO M, WANG ZJ, YANG HW, et al. Influence of genetic polymorphisms on mycophenolic acid pharmacokinetics and patient outcomes in renal transplantation[J]. Curr Drug Metab, 2018, 19(14):1199- 1205. DOI: 10.2174/1389200219666171227201608.
    [54]
    BOUAMAR R, HESSELINK DA, VAN SCHAIK RH, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients[J]. Pharmacogenet Genomics, 2012, 22(6):399-407. DOI: 10.1097/FPC.0b013e32834a8650.
    [55]
    CILIÃO HL, CAMARGO-GODOY RBO, SOUZA MF, et al. Polymorphisms in IMPDH2, UGT2B7, and CES2 genes influence the risk of graft rejection in kidney transplant recipients taking mycophenolate mofetil[J]. Mutat Res Genet Toxicol Environ Mutagen, 2018, 836(Pt B):97-102. DOI: 10.1016/j.mrgentox.2018.06.008.
    [56]
    SUNDERLAND A, RUSS G, SALLUSTIO B, et al. Effect of the proton-pump inhibitor pantoprazole on mycophenolic acid exposure in kidney and liver transplant recipients (IMPACT study): a randomized trial[J]. Nephrol Dial Transplant, 2020, 35(6):1060-1070. DOI: 10.1093/ndt/gfaa111.
    [57]
    BOŽINA N, LALIĆ Z, NAĐ-ŠKEGRO S, et al. Steadystate pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions[J]. Eur J Clin Pharmacol, 2017, 73(9):1129-1140. DOI: 10.1007/s00228-017-2285-4.
    [58]
    LLOBERAS N, TORRAS J, CRUZADO JM, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the pharmacogenomic substudy within the symphony study[J]. Nephrol Dial Transplant, 2011, 26(11):3784-3793. DOI:10.1093/ndt/ gfr130.
    [59]
    TAGUE LK, BYERS DE, HACHEM R, et al. Impact of SLCO1B3 polymorphisms on clinical outcomes in lung allograft recipients receiving mycophenolic acid[J].Pharmacogenomics J, 2020, 20(1):69-79. DOI:10.1038/ s41397-019-0086-0.
    [60]
    CIFTCI HS, DEMIR E, KARADENIZ MS, et al. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant[J]. Ren Fail, 2018, 40(1):395- 402. DOI: 10.1080/0886022X.2018.1489285.
    [61]
    DE WINTER BC, MATHOT RA, SOMBOGAARD F, et al. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring[J]. Clin J Am Soc Nephrol, 2011, 6(3):656-663. DOI: 10.2215/CJN.05440610.
    [62]
    KUYPERS DR, LE MEUR Y, CANTAROVICH M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation[J]. Clin J Am Soc Nephrol, 2010, 5(2):341-358. DOI:10.2215/ CJN.07111009.
    [63]
    VAN HEST RM, HESSELINK DA, VULTO AG, et al. Individualization of mycophenolate mofetil dose in renal transplant recipients[J]. Expert Opin Pharmacother, 2006, 7(4):361-376. DOI: 10.1517/14656566.7.4.361.
    [64]
    WALLEMACQ P, ARMSTRONG VW, BRUNET M, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference[J]. Ther Drug Monit, 2009, 31(2):139-152. DOI: 10.1097/FTD.0b013e318198d092.
    [65]
    BERGER I, HAUBRICH K, ENSOM MHH, et al. RELATE: relationship of limited sampling strategy and adverse effects of mycophenolate mofetil in pediatric renal transplant patients[J]. Pediatr Transplant, 2019, 23(2):e13355. DOI: 10.1111/petr.13355.
    [66]
    MARTINY D, MACOURS P, COTTON F, et al. Reliability of mycophenolic acid monitoring by an enzyme multiplied immunoassay technique[J]. Clin Lab, 2010, 56(7/8):345-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=905e99b0360a2f540d8c24f875fb517f
    [67]
    GARG U, MUNAR A, FRAZEE C. Determination of mycophenolic acid and mycophenolic acid glucuronide using liquid chromatography tandem mass spectrometry (LC/MS/MS)[J]. Curr Protoc Toxicol, 2018, 75:18.21.1- 18.21.8. DOI: 10.1002/cptx.42.
    [68]
    BITTERSOHL H, HERBINGER J, WEN M, et al. Simultaneous determination of protein-unbound cyclosporine A and mycophenolic acid in kidney transplant patients using liquid chromatography-tandem mass spectrometry[J]. Ther Drug Monit, 2017, 39(3):211- 219. DOI: 10.1097/FTD.0000000000000392.
    [69]
    KIANG TK, ENSOM MH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update[J]. Expert Opin Drug Metab Toxicol, 2016, 12(5):545-553. DOI:10.1517/17425255.2016.11708 06.
    [70]
    HOLFORD NH, BUCLIN T. Safe and effective variability-a criterion for dose individualization[J]. Ther Drug Monit, 2012, 34(5):565-568. DOI:10.1097/ FTD.0b013e31826aabc3.
    [71]
    FILLER G, ALVAREZ-ELÍAS AC, MCINTYRE C, et al. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy[J]. Pediatr Nephrol, 2017, 32(1):21-29. DOI: 10.1007/s00467-016-3352-2.
    [72]
    MCCUNE JS, BEMER MJ, LONG-BOYLE J. Pharmacokinetics, pharmacodynamics, and pharmacogenomics of immunosuppressants in allogeneic hematopoietic cell transplantation: part II[J]. Clin Pharmacokinet, 2016, 55(5):551-593. DOI:10.1007/s40262- 015-0340-9.
    [73]
    METZ DK, HOLFORD N, KAUSMAN JY, et al. Optimizing mycophenolic acid exposure in kidney transplant recipients: time for target concentration intervention [J]. Transplantation, 2019, 103(10):2012- 2030. DOI: 10.1097/TP.0000000000002762.
    [74]
    MORRIS RG. Target concentration strategy for cyclosporin monitoring[J]. Clin Pharmacokinet, 1997, 32(3):175-179. DOI: 10.2165/00003088-199732030-00001.
    [75]
    HALE MD, NICHOLLS AJ, BULLINGHAM RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation[J]. Clin Pharmacol Ther, 1998, 64(6):672-683. DOI:10.1016/ S0009-9236(98)90058-3.
    [76]
    VAN GELDER T, HILBRANDS LB, VANRENTERGHEM Y, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation[J]. Transplantation, 1999, 68(2):261-266. DOI:10.1097/00007890-199907270- 00018.
    [77]
    LE MEUR Y, BÜCHLER M, THIERRY A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation[J]. Am J Transplant, 2007, 7(11):2496-2503. DOI: 10.1111/j.1600-6143.2007.01983.x.
    [78]
    LE MEUR Y, THIERRY A, GLOWACKI F, et al. Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil[J]. Transplantation, 2011, 92(11):1244-1251. DOI:10.1097/ TP.0b013e318234e134.
    [79]
    KUYPERS DR, DE JONGE H, NAESENS M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, openlabel, prospective, clinical follow-up study in renal allograft recipients[J]. Clin Ther, 2008, 30(4):673-683. DOI: 10.1016/j.clinthera.2008.04.014.
    [80]
    MASAKI N, IWADOH K, TONSHO M, et al. Trough level of mycophenolic acid did not affect de novo DSA development in kidney transplantation[J]. Transplant Proc, 2019, 51(8):2624-2628. DOI:10.1016/ j.transproceed.2019.03.078.
    [81]
    PAYEN S, ZHANG D, MAISIN A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients[J]. Ther Drug Monit, 2005, 27(3):378-388. DOI:10.1097/01. ftd.0000159784.25872.f6.
    [82]
    BARRACLOUGH KA, ISBEL NM, JOHNSON DW, et al. A limited sampling strategy for the simultaneous estimation of tacrolimus, mycophenolic acid and unbound prednisolone exposure in adult kidney transplant recipients[J]. Nephrology (Carlton), 2012, 17(3):294-299. DOI: 10.1111/j.1440-1797.2011.01560.x.
    [83]
    BARALDO M, ISOLA M, FERUGLIO MT, et al. Therapeutic mycophenolic acid monitoring by means of limited sampling strategy in orthotopic heart transplant patients[J]. Transplant Proc, 2005, 37(5):2240-2243. DOI: 10.1016/j.transproceed.2005.03.090.
    [84]
    BARALDO M, COJUTTI PG, ISOLA M, et al. Validation of limited sampling strategy for estimation of mycophenolic acid exposure during the first year after heart transplantation[J]. Transplant Proc, 2009, 41(10):4277- 4284. DOI: 10.1016/j.transproceed.2009.08.077.
    [85]
    CAI W, YE C, SUN X, et al. Limited sampling strategy for predicting area under the concentration-time curve for mycophenolic acid in Chinese adults receiving mycophenolate mofetil and tacrolimus early after renal transplantation[J]. Ther Drug Monit, 2015, 37(3):304- 310. DOI: 10.1097/FTD.0000000000000165.
    [86]
    CAI W, CAI Q, XIONG N, et al. Limited sampling strategy for estimating mycophenolic acid exposure on day 7 post-transplant for two mycophenolate mofetil formulations derived from 20 Chinese renal transplant recipients[J]. Transplant Proc, 2018, 50(5):1298-1304. DOI: 10.1016/j.transproceed.2018.02.068.
    [87]
    ENOKIYA T, NISHIKAWA K, MURAKI Y, et al. Usefulness of limited sampling strategy for mycophenolic acid area under the curve considering postoperative days in living-donor renal transplant recipients with concomitant prolonged-release tacrolimus[J]. J Pharm Health Care Sci, 2017, 3:17. DOI: 10.1186/s40780-017-0086-7.
    [88]
    GAIES E, BEN SASSI M, EL JEBARI H, et al. Limited sampling strategy for the estimation of mycophenolic acid area under the curve in Tunisian renal transplant patients[J]. Nephrol Ther, 2017, 13(6):460-462. DOI:10. 1016/j.nephro.2017.02.010.
    [89]
    ALSMADI MM, ALFARAH MQ, ALBDERAT J, et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue[J]. Biopharm Drug Dispos, 2019, 40(9):325-340. DOI: 10.1002/bdd.2206.
    [90]
    FERREIRA PCL, THIESEN FV, DE ARAUJO TT, et al. Comparison of plasma and oral fluid concentrations of mycophenolic acid and its glucuronide metabolite by LC-MS in kidney transplant patients[J]. Eur J Clin Pharmacol, 2019, 75(4):553-559. DOI:10.1007/s00228- 018-02614-9.
    [91]
    BROOKS E, TETT SE, ISBEL NM, et al. Investigation of the association between total and free plasma and saliva mycophenolic acid concentrations following administration of enteric-coated mycophenolate sodium in adult kidney transplant recipients[J]. Clin Drug Investig, 2019, 39(12):1175-1184. DOI:10.1007/s40261- 019-00844-y.
    [92]
    ZWART TC, GOKOEL SRM, VAN DER BOOG PJM, et al. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device[J]. Br J Clin Pharmacol, 2018, 84(12):2889-2902. DOI: 10.1111/bcp.13755.
    [93]
    MARTIAL LC, HOOGTANDERS KEJ, SCHREUDER MF, et al. Dried blood spot sampling for tacrolimus and mycophenolic acid in children: analytical and clinical validation[J]. Ther Drug Monit, 2017, 39(4):412-421. DOI: 10.1097/FTD.0000000000000422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (307) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return