Volume 11 Issue 5
Sep.  2020
Turn off MathJax
Article Contents
Yi Wang, Cheng Ke. Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013
Citation: Yi Wang, Cheng Ke. Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients[J]. ORGAN TRANSPLANTATION, 2020, 11(5): 605-609. doi: 10.3969/j.issn.1674-7445.2020.05.013

Diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis in renal transplant recipients

doi: 10.3969/j.issn.1674-7445.2020.05.013
More Information
  • Corresponding author: Cheng Ke, Email: chke1972@163.com
  • Received Date: 2020-06-02
    Available Online: 2021-01-19
  • Publish Date: 2020-09-15
  •   Objective  ;To evaluate the clinical value of lymphocyte subset classification in the diagnosis of active pulmonary tuberculosis in renal transplant recipients.  Methods   Clinical data of 52 recipients undergoing renal transplantation were retrospectively analyzed. According to the results of imaging and etiological examination, 52 recipients were divided into the stable group(n=19), tuberculosis group (n=9), bacteria group (n=12) and fungi group (n=12), respectively. The renal function of recipients was compared, and the proportion and absolute value of lymphocyte subset were analyzed and compared among four groups. The diagnostic value of lymphocyte subset classification for active pulmonary tuberculosis after renal transplantation was evaluated.  Results  Compared with the stable group, the levels of blood urea nitrogen and serum creatinine in the tuberculosis group, bacteria group and fungi group were significantly increased (all P < 0.05). The proportion of CD3+, CD8+, CD4+, natural killer (NK) cells and CD19+ lymphocyte subsets were not significantly different (all P>0.05). And the absolute values of CD3+, CD8+, CD4+, NK cells and CD19+ lymphocyte subsets were significantly decreased (all P < 0.05). The proportion of CD8+ lymphocyte subset in the tuberculosis group and fungi group was significantly higher than that in the bacteria group (both P < 0.05). The optimal cut-off value of CD8+ lymphocyte subset ratio in the differential diagnosis of active pulmonary tuberculosis and bacterial pneumonia was 33.27%, and the sensitivity and specificity were 0.889 and 0.833, respectively. The area under the curve (AUC) was 0.880.  Conclusions  The classification of lymphocyte subset can provide auxiliary diagnostic basis for differential diagnosis and individualized treatment of active pulmonary tuberculosis and bacterial pneumonia in renal transplant recipients.

     

  • loading
  • [1]
    张新宝, 周瑛, 姚超, 等.结核感染T细胞斑点试验诊断胸腔积液的价值[J].实用医学杂志, 2019, 35(9):1492- 1495. DOI: 10.3969/j.issn.1006-5725.2019.09.031.

    ZHANG XB, ZHOU Y, YAO C, et al. Value of T-spot. TB test in diagnosis of pleural effusion[J]. J Pract Med, 2019, 35(9):1492-1495. DOI:10.3969/j.issn.1006-5725. 2019.09.031.
    [2]
    MUÑOZ P, RODRÍGUEZ C, BOUZA E. Mycobacterium tuberculosis infection in recipients of solid organ transplants[J]. Clin Infect Dis, 2005, 40(4):581-587. DOI: 10.1086/427692.
    [3]
    DOWDY DW, BASU S, ANDREWS JR. Is passive diagnosis enough? the impact of subclinical disease on diagnostic strategies for tuberculosis[J]. Am J Respir Crit Care Med, 2013, 187(5):543-551. DOI:10.1164/ rccm.201207-1217OC.
    [4]
    WU W, YANG M, XU M, et al. Diagnostic delay and mortality of active tuberculosis in patients after kidney transplantation in a tertiary care hospital in China[J]. PLoS One, 2018, 13(4):e0195695. DOI:10.1371/journal. pone.0195695.
    [5]
    MARQUES ID, AZEVEDO LS, PIERROTTI LC, et al. Clinical features and outcomes of tuberculosis in kidney transplant recipients in Brazil: a report of the last decade[J]. Clin Transplant, 2013, 27(2):E169-E176. DOI:10.1111/ ctr.12077.
    [6]
    VIANA LA, CRISTELLI MP, SANTOS DW, et al.Influence of epidemiology, immunosuppressive regimens, clinical presentation, and treatment on kidney transplant outcomes of patients diagnosed with tuberculosis: a retrospective cohort analysis[J]. Am J Transplant, 2019, 19(5):1421-1431. DOI: 10.1111/ajt.15220.
    [7]
    CALAROTA SA, ZELINI P, DE SILVESTRI A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1):112-119. DOI: 10.1097/TP.0b013e318239e90c.
    [8]
    PAI M, DENKINGER CM, KIK SV, et al. Gamma interferon release assays for detection of mycobacterium tuberculosis infection[J]. Clin microbiol Rev, 2014, 27(1):3-20. DOI: 10.1128/CMR.00034-13.
    [9]
    JAMBALDORJ E, HAN M, JEONG JC, et al. Poor predictability of QuantiFERON-TB assay in recipients and donors for tuberculosis development after kidney transplantation in an intermediate-TB-burden country[J]. BMC Nephrol, 2017, 18(1):88. DOI:10.1186/s12882-017- 0506-9.
    [10]
    GIACOMELLI IL, SCHUHMACHER NETO R, MARCHIORI E, et al. Chest X-ray and chest CT findings in patients diagnosed with pulmonary tuberculosis following solid organ transplantation: a systematic review[J]. J Bras Pneumol, 2018, 44(2):161-166. DOI:10.1590/s1806- 37562017000000459.
    [11]
    NATORI Y, FERREIRA VH, NELLIMARLA S, et al. Incidence, outcomes, and long-term immune response to tuberculosis in organ transplant recipients[J]. Transplantation, 2019, 103(1):210-215. DOI:10.1097/ TP.0000000000002340.
    [12]
    LI G, YANG F, HE X, et al. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients[J]. Microbes Infect, 2020, 22(3):119-126. DOI:10.1016/ j.micinf.2019.10.001.
    [13]
    CACCAMO N, PIETRA G, SULLIVAN LC, et al. Human CD8 T lymphocytes recognize mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines[J]. Eur J Immunol, 2015, 45(4):1069-1081. DOI:10.1002/ eji.201445193.
    [14]
    MCMURTREY C, HARRIFF MJ, SWARBRICK GM, et al. T cell recognition of mycobacterium tuberculosis peptides presented by HLA-E derived from infected human cells[J]. PLoS One, 2017, 12(11):e0188288. DOI:10.1371/ journal.pone.0188288.
    [15]
    PREZZEMOLO T, VAN MEIJGAARDEN KE, FRANKEN KLMC, et al. Detailed characterization of human mycobacterium tuberculosis specific HLA-E restricted CD8+ T cells[J]. Eur J Immunol, 2018, 48(2):293-305. DOI: 10.1002/eji.201747184.
    [16]
    GRANT EJ, NGUYEN AT, LOBOS CA, et al. The unconventional role of HLA-E: the road less traveled[J]. Mol Immunol, 2020, 120:101-112. DOI:10.1016/j.molimm. 2020.02.011.
    [17]
    VAN MEIJGAARDEN KE, HAKS MC, CACCAMO N, et al. Human CD8+ T-cells recognizing peptides from mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset[J]. PLoS Pathog, 2015, 11(3):e1004671. DOI: 10.1371/journal.ppat.1004671.
    [18]
    TAMBUNAN BA, PRIYANTO H, NUGRAHA J, et al. CD4+ and CD8+ T-cells expressing interferon gamma in active pulmonary tuberculosis patients[J]. Afr J Infect Dis, 2018, 12(1 Suppl):49-53. DOI: 10.2101/Ajid.12v1S.6.
    [19]
    YANG JD, MOTT D, SUTIWISESAK R, et al. Mycobacterium tuberculosis-specific CD4+ and CD8+ T cells differ in their capacity to recognize infected macrophages[J]. PLoS Pathog, 2018, 14(5):e1007060. DOI: 10.1371/journal.ppat.1007060.
    [20]
    HERZMANN C, DALLENGA T, KALINKE U. Pulmonary immune mechanisms in tuberculosis[J]. Pneumologie, 2018, 72(7):493-502. DOI: 10.1055/s-0043-122961.
    [21]
    LIN PL, FLYNN JL. CD8 T cells and mycobacterium tuberculosis infection[J]. Semin Immunopathol, 2015, 37(3):239-249. DOI: 10.1007/s00281-015-0490-8.
    [22]
    LAZAREVIC V, FLYNN J. CD8+ T cells in tuberculosis[J]. Am J Respir Crit Care Med, 2002, 166(8):1116-1121. DOI: 10.1164/rccm.2204027.
    [23]
    PALLET N, FERNÁNDEZ-RAMOS AA, LORIOT MA. Impact of immunosuppressive drugs on the metabolism of T cells[J]. Int Rev Cell Mol Biol, 2018, 341:169-200. DOI: 10.1016/bs.ircmb.2018.05.009.
    [24]
    FERNÁNDEZ-RAMOS AA, POINDESSOUS V, MARCHETTI-LAURENT C, et al. The effect of immunosuppressive molecules on T-cell metabolic reprogramming[J]. Biochimie, 2016, 127:23-36. DOI: 10.1016/j.biochi.2016.04.016.
    [25]
    WANG J, DAI Y, LIU J, et al. MTB-specific lymphocyte responses are impaired in tuberculosis patients with pulmonary cavities[J]. Eur J Med Res, 2017, 22(1):4. DOI: 10.1186/s40001-016-0242-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (274) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return