Volume 11 Issue 1
Jan.  2020
Turn off MathJax
Article Contents
Zhang Zhenggang, Zheng Fang. Research progress on cardiac allograft vasculopathy[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017
Citation: Zhang Zhenggang, Zheng Fang. Research progress on cardiac allograft vasculopathy[J]. ORGAN TRANSPLANTATION, 2020, 11(1): 104-109, 125. doi: 10.3969/j.issn.1674-7445.2020.01.017

Research progress on cardiac allograft vasculopathy

doi: 10.3969/j.issn.1674-7445.2020.01.017
More Information
  • Corresponding author: Zheng Fang, Email: zhengfangtj@hust.edu.cn
  • Received Date: 2019-09-22
    Available Online: 2021-01-19
  • Publish Date: 2020-01-15
  • Allogeneic heart transplantation (HTx) is the primary treatment for patients with end-stage heart failure. Nevertheless, the long-term complication of cardiac allograft vasculopathy (CAV) after HTx is the main factor affecting the long-term survival of the recipients. Up to now, there is no effective methods to prevent and treat CAV. This article reviews the pathological manifestations of CAV, immunological factors of CAV and other risk factors of CAV, aiming to provide novel ideas and understanding for CAV research.

     

  • loading
  • [1]
    KIM IC, YOUN JC, KOBASHIGAWA JA. The past, present and future of heart transplantation[J]. Korean Circ J, 2018, 48(7):565-590. DOI: 10.4070/kcj.2018.0189.
    [2]
    LUND LH, EDWARDS LB, DIPCHAND AI, et al. The Registry of the International Society for Heart and Lung Transplantation: thirty-third adult heart transplantation report-2016; focus theme: primary diagnostic indications for transplant[J]. J Heart Lung Transplant, 2016, 35(10):1158-1169. DOI: 10.1016/j.healun.2016.08.017.
    [3]
    NIKOLOVA AP, KOBASHIGAWA JA. Cardiac allograft vasculopathy: the enduring enemy of cardiac transplantation[J]. Transplantation, 2019, 103(7):1338-1348. DOI: 10.1097/TP.0000000000002704.
    [4]
    SPARTALIS M, SPARTALIS E, TZATZAKI E, et al. Cardiac allograft vasculopathy after heart transplantation: current prevention and treatment strategies[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1):303-311. DOI: 10.26355/eurrev_201901_16777.
    [5]
    FEARON WF, OKADA K, KOBASHIGAWA JA, et al. Angiotensin-converting enzyme inhibition early after heart transplantation[J]. J Am Coll Cardiol, 2017, 69(23):2832-2841. DOI: 10.1016/j.jacc.2017.03.598.
    [6]
    SEKI A, FISHBEIN MC. Predicting the development of cardiac allograft vasculopathy[J]. Cardiovasc Pathol, 2014, 23(5):253-260. DOI: 10.1016/j.carpath.2014.05.001.
    [7]
    LABARRERE CA, JAEGER BR, KASSAB GS. Cardiac allograft vasculopathy: microvascular arteriolar capillaries ("capioles") and survival[J]. Front Biosci (Elite Ed), 2017, 9:110-128.
    [8]
    MANGINI S, ALVES BR, SILVESTRE OM, et al.Heart transplantation: review[J]. Einstein (Sao Paulo), 2015, 13(2):310-318. DOI: 10.1590/S1679-45082015RW3154.
    [9]
    MEROLA J, JANE-WIT DD, POBER JS. Recent advances in allograft vasculopathy[J]. Curr Opin Organ Transplant, 2017, 22(1):1-7. DOI: 10.1097/MOT.0000000000000370.
    [10]
    TAWAKOL A, TARDIF JC. Early detection of cardiac allograft vasculopathy and long-term risk after heart transplantation[J]. J Am Coll Cardiol, 2016, 68(4):393-395. DOI: 10.1016/j.jacc.2016.05.046.
    [11]
    JANSEN MA, OTTEN HG, DE WEGER RA, et al. Immunological and fibrotic mechanisms in cardiac allograft vasculopathy[J]. Transplantation, 2015, 99(12):2467-2475. DOI: 10.1097/TP.0000000000000848.
    [12]
    ZEISBERG EM, TARNAVSKI O, ZEISBERG M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis[J]. Nat Med, 2007, 13(8):952-961. doi: 10.1038/nm1613
    [13]
    DIREKZE NC, FORBES SJ, BRITTAN M, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice[J]. Stem Cells, 2003, 21(5):514-520. doi: 10.1634/stemcells.21-5-514
    [14]
    PICHLER M, RAINER PP, SCHAUER S, et al. Cardiac fibrosis in human transplanted hearts is mainly driven by cells of intracardiac origin[J]. J Am Coll Cardiol, 2012, 59(11):1008-1016. DOI: 10.1016/j.jacc. 2011.11.036.
    [15]
    SOLER MJ, BATLLE M, RIERA M, et al. ACE2 and ACE in acute and chronic rejection after human heart transplantation[J]. Int J Cardiol, 2019, 275:59-64. DOI: 10.1016/j.ijcard.2018.10.002.
    [16]
    ZHAO Y, CHEN S, LAN P, et al. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model[J]. Am J Transplant, 2018, 18(3):604-616. DOI: 10.1111/ajt.14543.
    [17]
    DASHKEVICH A, RAISSADATI A, SYRJÄLÄ SO, et al. Ischemia-reperfusion injury enhances lymphatic endothelial VEGFR3 and rejection in cardiac allografts[J]. Am J Transplant, 2016, 16(4):1160-1172. DOI: 10.1111/ajt.13564.
    [18]
    RIQUELME P, TOMIUK S, KAMMLER A, et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients[J]. Mol Ther, 2013, 21(2):409-422. DOI: 10.1038/mt.2012.168.
    [19]
    WU C, ZHAO Y, XIAO X, et al. Graft-infiltrating macrophages adopt an M2 phenotype and are inhibited by purinergic receptor P2X7 antagonist in chronic rejection[J]. Am J Transplant, 2016, 16(9):2563-2573. DOI: 10.1111/ajt.13808.
    [20]
    BORTHWICK LA, BARRON L, HART KM, et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis[J]. Mucosal Immunol, 2016, 9(1):38-55. DOI: 10.1038/mi.2015.34.
    [21]
    DAVIES LC, TAYLOR PR. Tissue-resident macrophages: then and now[J]. Immunology, 2015, 144(4):541-548. DOI: 10.1111/imm.12451.
    [22]
    NAYAK DK, ZHOU F, XU M, et al. Long-term persistence of donor alveolar macrophages in human lung transplant recipients that influences donor-specific immune responses[J]. Am J Transplant, 2016, 16(8):2300-2311. DOI: 10.1111/ajt.13819.
    [23]
    LIN CM, PLENTER RJ, COULOMBE M, et al. Interferon gamma and contact-dependent cytotoxicity are each rate limiting for natural killer cell-mediated antibody-dependent chronic rejection[J]. Am J Transplant, 2016, 16(11):3121-3130. DOI: 10.1111/ajt.13865.
    [24]
    HIROHASHI T, CHASE CM, DELLA PELLE P, et al. A novel pathway of chronic allograft rejection mediated by NK cells and alloantibody[J]. Am J Transplant, 2012, 12(2):313-321. DOI: 10.1111/j.1600-6143.2011.03836.x.
    [25]
    SCHIECHL G, HERMANN FJ, RODRIGUEZ GOMEZ M, et al. Basophils trigger fibroblast activation in cardiac allograft fibrosis development[J]. Am J Transplant, 2016, 16(9):2574-2588. DOI: 10.1111/ajt.13764.
    [26]
    CHIH S, CHONG AY, MIELNICZUK LM, et al. Allograft vasculopathy: the Achilles' heel of heart transplantation[J]. J Am Coll Cardiol, 2016, 68(1):80-91. DOI: 10.1016/j.jacc.2016.04.033.
    [27]
    EDWARDS LA, NOWOCIN AK, JAFARI NV, et al. Chronic rejection of cardiac allografts is associatedwith increased lymphatic flow and cellulartrafficking[J]. Circulation, 2018, 137(5):488-503.DOI:10. 1161/CIRCULATIONAHA.117.028533.
    [28]
    BALDWIN HS, DRAKOS SG. Lymphangiogenesis in chronic rejection and coronary allograft vasculopathy: anemerging diagnostic and therapeutic target?[J]. Circulation, 2018, 137(5):504-507.DOI:10.1161/CIRCULATIONAHA. 117.031716.
    [29]
    KOHLGRUBER AC, GAL-OZ ST, LAMARCHE NM, et al. γ δ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis[J]. Nat Immunol, 2018, 19(5):464-474. DOI: 10.1038/s41590-018-0094-2.
    [30]
    ZORN E. Effector B cells in cardiac allograft vasculopathy[J]. Curr Opin Organ Transplant, 2019, 24(1):31-36. DOI: 10.1097/MOT.0000000000000591.
    [31]
    CHATTERJEE D, MOORE C, GAO B, et al. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy[J]. J Heart Lung Transplant, 2018, 37(3):385-393. DOI: 10.1016/j.healun.2017.09.011.
    [32]
    HUIBERS MM, GAREAU AJ, BEERTHUIJZEN JM, et al. Donor-specific antibodies are produced locally in ectopic lymphoid structures in cardiac allografts[J]. Am J Transplant, 2017, 17(1):246-254. DOI: 10.1111/ajt.13969.
    [33]
    MOHIB K, CHERUKURI A, ROTHSTEIN DM. Regulatory B cells and transplantation: almost prime time?[J]. Curr Opin Organ Transplant, 2018, 23(5):524-532. DOI: 10.1097/MOT.0000000000000559.
    [34]
    ZENG Q, NG YH, SINGH T, et al. B cells mediate chronic allograft rejection independently of antibody production[J]. J Clin Invest, 2014, 124(3):1052-1056. DOI: 10.1172/JCI70084.
    [35]
    QIN L, LI G, KIRKILES-SMITH N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, 16(10):2865-2876. DOI: 10.1111/ajt.13834.
    [36]
    THOMAS KA, VALENZUELA NM, GJERTSON D, et al. An anti-C1s monoclonal, TNT003, inhibits complement activation induced by antibodies against HLA[J]. Am J Transplant, 2015, 15(8):2037-2049. DOI:10.1111/ajt. 13273.
    [37]
    ZHANG Q, REED EF. The importance of non-HLA antibodies in transplantation[J]. Nat Rev Nephrol, 2016, 12(8):484-495. DOI: 10.1038/nrneph.2016.88.
    [38]
    ROSE ML. Role of anti-vimentin antibodies in allograft rejection[J]. Hum Immunol, 2013, 74(11):1459-1462. DOI: 10.1016/j.humimm.2013.06.006.
    [39]
    ATKINSON C, QIAO F, YANG X, et al. Targeting pathogenic postischemic self-recognition by natural IgM to protect against posttransplantation cardiac reperfusion injury[J]. Circulation, 2015, 131(13):1171-1180. DOI: 10.1161/CIRCULATIONAHA.114.010482.
    [40]
    PELLEGRINI L, FOGLIO E, PONTEMEZZO E, et al. HMGB1 and repair: focus on the heart[J]. Pharmacol Ther, 2019, 196:160-182. DOI: 10.1016/j.pharmthera.2018.12.005.
    [41]
    ZOU H, YANG Y, GAO M, et al. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs[J]. Am J Transplant, 2014, 14(8):1765-1777. DOI: 10.1111/ajt.12781.
    [42]
    SIEDE J, FRÖHLICH A, DATSI A, et al. IL-33 receptor-expressing regulatory T cells are highly activated, Th2 biased and suppress CD4 T cell proliferation through IL-10 and TGFβ release[J]. PLoS One, 2016, 11(8):e0161507. DOI: 10.1371/journal.pone.0161507.
    [43]
    JIN Y, KONG D, LIU C, et al. Role of IL-33 in transplant biology[J]. Eur Cytokine Netw, 2019, 30(2):39-42. DOI: 10.1684/ecn.2019.0429.
    [44]
    DAI C, LU FN, JIN N, et al. Recombinant IL-33 prolongs leflunomide-mediated graft survival by reducing IFN-γ and expanding CD4(+)Foxp3(+) T cells in concordant heart transplantation[J]. Lab Invest, 2016, 96(8):820-829. DOI: 10.1038/labinvest.2016.54.
    [45]
    CAYROL C, GIRARD JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family[J]. Immunol Rev, 2018, 281(1):154-168. DOI: 10.1111/imr.12619.
    [46]
    SPALLAROSSA P, MELIOTA G, BRUNELLI C, et al. Potential cardiac risk of immune-checkpoint blockade as anticancer treatment: what we know, what we do not know, and what we can do to prevent adverse effects[J]. Med Res Rev, 2018, 38(5):1447-1468. DOI: 10.1002/med.21478.
    [47]
    KYTHREOTOU A, SIDDIQUE A, MAURI FA, et al. PD-L1[J]. J Clin Pathol, 2018, 71(3):189-194. DOI: 10.1136/jclinpath-2017-204853.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (354) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return