Volume 10 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Fu Tianlong, Nie Tengfei, Yin Hao, et al. Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015
Citation: Fu Tianlong, Nie Tengfei, Yin Hao, et al. Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 719-723. doi: 10.3969/j.issn.1674-7445.2019.06.015

Pancreatic islet cells derived from pluripotent stem cells and their application in the treatment of diabetes

doi: 10.3969/j.issn.1674-7445.2019.06.015
  • Received Date: 2019-07-01
    Available Online: 2021-01-19
  • Publish Date: 2019-11-15
  • loading
  • [1]
    DIELEMAN JL, BARAL R, BIRGER M, et al. US spending on personal health care and public health, 1996-2013[J]. JAMA, 2016, 316(24):2627-2646. DOI: 10.1001/jama.2016.16885.
    [2]
    American Diabetes Association. 1. Improving care and promoting health in populations: standards of medical care in diabetes-2018[J]. Diabetes Care, 2018, 41(Suppl 1):S7-S12. DOI: 10.2337/dc18-S001.
    [3]
    WANG L, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. DOI: 10.1001/jama.2017.7596.
    [4]
    SHAPIRO AM, LAKEY JR, RYAN EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238. doi: 10.1056/NEJM200007273430401
    [5]
    ABDOLAZIMI Y, ZHAO Z, LEE S, et al. CC-401 promotes β-cell replication via pleiotropic consequences of DYRK1A/B inhibition[J]. Endocrinology, 2018, 159(9):3143-3157. DOI: 10.1210/en.2018-00083.
    [6]
    WANG P, KARAKOSE E, LIU H, et al. Combined inhibition of DYRK1A, SMAD, and trithorax pathways synergizes to induce robust replication in adult human beta cells[J]. Cell Metab, 2019, 29(3):638-652. DOI: 10.1016/j.cmet.2018.12.005.
    [7]
    LOOMANS CJM, WILLIAMS GIULIANI N, BALAK J, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential[J]. Stem Cell Reports, 2018, 10(3):712-724. DOI: 10.1016/j.stemcr.2018.02.005.
    [8]
    SNEDDON JB, TANG Q, STOCK P, et al. Stem cell therapies for treating diabetes: progress and remaining challenges[J]. Cell Stem Cell, 2018, 22(6):810-823. DOI: 10.1016/j.stem.2018.05.016.
    [9]
    LATRES E, FINAN DA, GREENSTEIN JL, et al. Navigating two roads to glucose normalization in diabetes: automated insulin delivery devices and cell therapy[J]. Cell Metab, 2019, 29(3):545-563. DOI: 10.1016/j.cmet.2019.02.007.
    [10]
    DESAI T, SHEA LD. Advances in islet encapsulation technologies[J]. Nat Rev Drug Discov, 2017, 16(5):367. DOI: 10.1038/nrd.2017.67.
    [11]
    DOLENŠEK J, RUPNIK MS, STOŽER A. Structural similarities and differences between the human and the mouse pancreas[J]. Islets, 2015, 7(1):e1024405. DOI: 10.1080/19382014.2015.1024405.
    [12]
    RODRIGUEZ-DIAZ R, MOLANO RD, WEITZ JR, et al. Paracrine interactions within the pancreatic islet determine the glycemic set point[J]. Cell Metab, 2018, 27(3):549-558. DOI: 10.1016/j.cmet.2018.01.015.
    [13]
    JENNINGS RE, BERRY AA, KIRKWOOD-WILSON R, et al. Development of the human pancreas from foregut to endocrine commitment[J]. Diabetes, 2013, 62(10):3514-3522. DOI: 10.2337/db12-1479.
    [14]
    JENNINGS RE, BERRY AA, STRUTT JP, et al. Human pancreas development[J]. Development, 2015, 142(18):3126-3137. DOI: 10.1242/dev.120063.
    [15]
    SHERWOOD RI, CHEN TY, MELTON DA. Transcriptional dynamics of endodermal organ formation[J]. Dev Dyn, 2009, 238(1):29-42. DOI: 10.1002/dvdy.21810.
    [16]
    BASTIDAS-PONCE A, SCHEIBNER K, LICKERT H, et al. Cellular and molecular mechanisms coordinating pancreas development[J]. Development, 2017, 144(16):2873-2888. DOI: 10.1242/dev.140756.
    [17]
    HART NJ, POWERS AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions[J]. Diabetologia, 2019, 62(2):212-222. DOI: 10.1007/s00125-018-4772-2.
    [18]
    SHARON N, CHAWLA R, MUELLER J, et al. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets[J]. Cell, 2019, 176(4):790-804. DOI: 10.1016/j.cell.2018.12.003.
    [19]
    HOHWIELER M, ILLING A, HERMANN PC, et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling[J]. Gut, 2017, 66(3):473-486. DOI: 10.1136/gutjnl-2016-312423.
    [20]
    ASSADY S, MAOR G, AMIT M, et al. Insulin production by human embryonic stem cells[J]. Diabetes, 2001, 50(8):1691-1697. doi: 10.2337/diabetes.50.8.1691
    [21]
    D'AMOUR KA, AGULNICK AD, ELIAZER S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nat Biotechnol, 2005, 23(12):1534-1541. doi: 10.1038/nbt1163
    [22]
    D'AMOUR KA, BANG AG, ELIAZER S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 2006, 24(11):1392-1401. doi: 10.1038/nbt1259
    [23]
    JIANG W, SHI Y, ZHAO D, et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells[J]. Cell Res, 2007, 17(4):333-344. doi: 10.1038/cr.2007.28
    [24]
    KROON E, MARTINSON LA, KADOYA K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo[J]. Nat Biotechnol, 2008, 26(4):443-452. DOI: 10.1038/nbt1393.
    [25]
    ZHANG D, JIANG W, LIU M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4):429-438. DOI: 10.1038/cr.2009.28.
    [26]
    NOSTRO MC, SARANGI F, OGAWA S, et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells[J]. Development, 2011, 138(5):861-871. DOI: 10.1242/dev.055236.
    [27]
    HRVATIN S, O'DONNELL CW, DENG F, et al. Differentiated human stem cells resemble fetal, not adult, β cells[J]. Proc Natl Acad Sci U S A, 2014, 111(8):3038-3043. DOI: 10.1073/pnas.1400709111.
    [28]
    NOSTRO MC, SARANGI F, YANG C, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines[J]. Stem Cell Reports, 2015, 4(4):591-604. DOI: 10.1016/j.stemcr.2015.02.017.
    [29]
    REZANIA A, BRUIN JE, RIEDEL MJ, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice[J]. Diabetes, 2012, 61(8):2016-2029. DOI: 10.2337/db11-1711.
    [30]
    REZANIA A, BRUIN JE, ARORA P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11):1121-1133. DOI: 10.1038/nbt.3033.
    [31]
    PAGLIUCA FW, MILLMAN JR, GÜRTLER M, et al. Generation of functional human pancreatic β cells in vitro[J]. Cell, 2014, 159(2):428-439. DOI: 10.1016/j.cell.2014.09.040.
    [32]
    VERES A, FAUST AL, BUSHNELL HL, et al. Charting cellular identity during human in vitro β-cell differentiation[J]. Nature, 2019, 569(7756):368-373. DOI: 10.1038/s41586-019-1168-5.
    [33]
    VELAZCO-CRUZ L, SONG J, MAXWELL KG, et al. Acquisition of dynamic function in human stem cell-derived β cells[J]. Stem Cell Reports, 2019, 12(2):351-365. DOI: 10.1016/j.stemcr.2018.12.012.
    [34]
    NAIR GG, LIU JS, RUSS HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells[J]. Nat Cell Biol, 2019, 21(2):263-274. DOI: 10.1038/s41556-018-0271-4.
    [35]
    CHENG X, YING L, LU L, et al. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells[J]. Cell Stem Cell, 2012, 10(4):371-384. DOI: 10.1016/j.stem.2012.02.024.
    [36]
    HUANG L, HOLTZINGER A, JAGAN I, et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids[J]. Nat Med, 2015, 21(11):1364-1371. DOI: 10.1038/nm.3973.
    [37]
    TROTT J, TAN EK, ONG S, et al. Long-term culture of self-renewing pancreatic progenitors derived from human pluripotent stem cells[J]. Stem Cell Reports, 2017, 8(6):1675-1688. DOI: 10.1016/j.stemcr.2017.05.019.
    [38]
    KONAGAYA S, IWATA H. Chemically defined conditions for long-term maintenance of pancreatic progenitors derived from human induced pluripotent stem cells[J]. Sci Rep, 2019, 9(1):640. DOI: 10.1038/s41598-018-36606-7.
    [39]
    ViaCyte. A safety, tolerability, and efficacy study of VC-01TM combination product in subjects with type 1 diabetes mellitus[EB/OL].(2014-09-12). https://clinicaltrials.gov/ct2/show/NCT02239354.
    [40]
    ViaCyte. A safety, tolerability, and efficacy study of VC-02TM combination product in subjects with type 1 diabetes mellitus and hypoglycemia unawareness [EB/OL].(2017-05-23). https://clinicaltrials.gov/ct2/show/NCT03163511.
    [41]
    JU ST, PANKA DJ, CUI H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation[J]. Nature, 1995, 373(6513):444-448. doi: 10.1038/373444a0
    [42]
    LAU HT, YU M, FONTANA A, et al. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice[J]. Science, 1996, 273(5271):109-112. doi: 10.1126/science.273.5271.109
    [43]
    YOLCU ES, ASKENASY N, SINGH NP, et al. Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection[J]. Immunity, 2002, 17(6):795-808. doi: 10.1016/S1074-7613(02)00482-X
    [44]
    YOLCU ES, ZHAO H, BANDURA-MORGAN L, et al. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice[J]. J Immunol, 2011, 187(11):5901-5909. DOI: 10.4049/jimmunol.1003266.
    [45]
    HEADEN DM, WOODWARD KB, CORONEL MM, et al. Local immunomodulation Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance[J]. Nat Mater, 2018, 17(8):732-739. DOI: 10.1038/s41563-018-0099-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (310) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return