Volume 10 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
Li Junhui, Zhao Yuanyu, Guo Meng, et al. Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010
Citation: Li Junhui, Zhao Yuanyu, Guo Meng, et al. Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice[J]. ORGAN TRANSPLANTATION, 2019, 10(6): 690-695. doi: 10.3969/j.issn.1674-7445.2019.06.010

Effect of adoptive reinfusion of Treg on immune rejection of islet allografts in mice

doi: 10.3969/j.issn.1674-7445.2019.06.010
More Information
  • Corresponding author: Yin Hao,Email:roytina0241032@hotmail.com
  • Received Date: 2019-07-21
    Available Online: 2021-01-19
  • Publish Date: 2019-11-15
  •   Objective  To investigate the effects of adoptive reinfusion of regulatory T cell (Treg) on the recovery of islet function and graft survival time after islet allograft transplantation.  Methods  The diabetic model was established using C57BL/6 mice as recipients, and Balb/c mice were chosen as donors for islet allografts transplantation beneath the renal capsule. The recipient mice were divided into 3 groups and 3 mice in each group according to different processing Methods: Treg experiment group (Treg group, 1×106 Treg cells were injected via tail vein at 1 d before operation), positive control group [sirolimus (SRL) group, SRL at a dose of 300 μg/(kg·d) was intragastrically given every day from 1 d before operation] and blank control group (control group, an equivalent volume of normal saline was intragastrically given every day from 1 d before operation). Enzyme-linked immune absorbent assay (ELISA) was used to detect the changes of blood glucose and C-peptide in mice within 14 days after transplantation. In vivo imaging technique was used to dynamically monitor the survival of mice within 14 days after transplantation.  Results  In each group, the blood glucose levels at postoperative 3 d were significantly decreased compared with those before transplantation (all P < 0.001). At postoperative 1 d, the C-peptide levels showed an explosive rise to varying degree in each group. At postoperative 3 d, the C-peptide levels in each group were significantly higher than that before operation (all P < 0.001). At the end of the observation period at 14 d after operation, the C-peptide levels in the SRL and Treg groups were (427±50) pmol/L and (833±57) pmol/L, relatively higher than that in the control group. But the blood glucose levels were (14.5±0.5) mmol/L and (12.1±0.6) mmol/L, significantly lower than that in the control group (all P < 0.001). Compared with the SRL group, the explosive release amount of C-peptide was significantly lower, the declining trend was more remarkably stable, and the C-peptide level was considerably higher in the Treg group at the end of the observation period (all P < 0.001). At postoperative 14 d, the grafts were almost completely apoptotic in the control group, over 50% of the grafts survived in the SRL group, and over 80% of the grafts survived in the Treg group.  Conclusions   Adoptive reinfusion of Treg cells can effectively protect islet grafts, prolong the survival time of grafts, and maintain the normal levels of blood glucose and C-peptide in the recipient mice.

     

  • loading
  • [1]
    SHAPIRO AM, LAKEY JR, RYAN EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238. doi: 10.1056/NEJM200007273430401
    [2]
    TRIÑANES J, RODRIGUEZ-RODRIGUEZ AE, BRITO-CASILLAS Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells[J]. Am J Transplant, 2017, 17(11):2829-2840. DOI: 10.1111/ajt.14323.
    [3]
    SAKAGUCHI S, SAKAGUCHI N, ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3):1151-1164. http://cn.bing.com/academic/profile?id=d8509cddf81bee5065f1cf55f084baaa&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    CHARBONNIER LM, CUI Y, STEPHEN-VICTOR E, et al. Functional reprogramming of regulatory T cells in the absence of Foxp3[J]. Nat Immunol, 2019, 20(9):1208-1219. DOI: 10.1038/s41590-019-0442-x.
    [5]
    MOHD ASHARI NS, MOHAMED SANUSI SNF, MOHD YASIN MA, et al. Major depressive disorder patients on antidepressant treatments display higher number of regulatory T cells[J]. Malays J Pathol, 2019, 41(2):169-176.
    [6]
    TERZIEVA V, MIHOVA A, ALTANKOVA I, et al. The dynamic changes in soluble CD30 and regulatory T cells before and after solid organ transplantations: a pilot study[J]. Monoclon Antib Immunodiagn Immunother, 2019, 38(4):137-144. DOI: 10.1089/mab.2019.0010.
    [7]
    CAMMARATA I, MARTIRE C, CITRO A, et al. Counter-regulation of regulatory T cells by autoreactive CD8+ T cells in rheumatoid arthritis[J]. J Autoimmun, 2019, 99:81-97. DOI: 10.1016/j.jaut.2019.02.001.
    [8]
    ALLOS H, AL DULAIJAN BS, CHOI J, et al. Regulatory T cells for more targeted immunosuppressive therapies[J]. Clin Lab Med, 2019, 39(1):1-13. DOI: 10.1016/j.cll.2018.11.001.
    [9]
    WU KK, HUAN Y. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc Pharmacol, 2008, 40(1):5.47.1-5.47.14. DOI: 10.1002/0471141755.ph0547s40.
    [10]
    ZMUDA EJ, POWELL CA, HAI T. A method for murine islet isolation and subcapsular kidney transplantation[J]. J Vis Exp, 2011(50): 2096. DOI: 10.3791/2096.
    [11]
    LU Y, DANG H, MIDDLETON B, et al. Bioluminescent monitoring of islet graft survival after transplantation[J]. Mol Ther, 2004, 9(3):428-435. doi: 10.1016/j.ymthe.2004.01.008
    [12]
    LABLANCHE S, VANTYGHEM MC, KESSLER L, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial[J]. Lancet Diabetes Endocrinol, 2018, 6(7):527-537. DOI: 10.1016/S2213-8587(18)30078-0.
    [13]
    NIJHOFF MF, DUBBELD J, VAN ERKEL AR, et al. Islet alloautotransplantation: allogeneic pancreas transplantation followed by transplant pancreatectomy and islet transplantation[J]. Am J Transplant, 2018, 18(4): 1016-1019. DOI: 10.1111/ajt.14593.
    [14]
    BRENNAN DC, KOPETSKIE HA, SAYRE PH, et al. Long-term follow-up of the edmonton protocol of islet transplantation in the United States[J]. Am J Transplant, 2016, 16(2):509-517. DOI: 10.1111/ajt.13458.
    [15]
    FARNEY AC, SUTHERLAND DE, OPARA EC. Evolution of islet transplantation for the last 30 years[J]. Pancreas, 2016, 45(1):8-20. DOI: 10.1097/MPA.0000000000000391.
    [16]
    SONG JL, LI M, YAN LN, et al. Higher tacrolimus blood concentration is related to increased risk of post-transplantation diabetes mellitus after living donor liver transplantation[J]. Int J Surg, 2018, 51:17-23. DOI: 10.1016/j.ijsu.2017.12.037.
    [17]
    PATHIRAJA V, VILLANI V, TASAKI M, et al. Tolerance of vascularized islet-kidney transplants in Rhesus monkeys[J]. Am J Transplant, 2017, 17(1):91-102. DOI: 10.1111/ajt.13952.
    [18]
    KANJANA K, PAISOOKSANTIVATANA K, MATANGKASOMBUT P, et al. Efficient short-term expansion of human peripheral blood regulatory T cells for co-culture suppression assay[J]. J Immunoassay Immunochem, 2019:1-17. DOI: 10.1080/15321819.2019.1659813.
    [19]
    LEVINE AG, MENDOZA A, HEMMERS S, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet[J]. Nature, 2017, 546(7658):421-425. DOI: 10.1038/nature22360.
    [20]
    WANG S, FAN T, YAO L, et al. Circulating follicular regulatory T cells could inhibit Ig production in a CTLA-4-dependent manner but are dysregulated in ulcerative colitis[J]. Mol Immunol, 2019, 114:323-329. DOI: 10.1016/j.molimm.2019.08.006.
    [21]
    IAMSAWAT S, DAENTHANASANMAK A, VOSS JH, et al. Stabilization of Foxp3 by targeting JAK2 enhances efficacy of CD8 induced regulatory T cells in the prevention of graft-versus-host disease[J]. J Immunol, 2018, 201(9):2812-2823. DOI: 10.4049/jimmunol.1800793.
    [22]
    KATAGIRI T, YAMAZAKI S, FUKUI Y, et al. JunB plays a crucial role in development of regulatory T cells by promoting IL-2 signaling[J]. Mucosal Immunol, 2019, 12(5):1104-1117. DOI: 10.1038/s41385-019-0182-0.
    [23]
    MENG ZJ, WU JH, ZHOU M, et al. Peripheral blood CD4+T cell populations by CD25 and Foxp3 expression as a potential biomarker: reflecting inflammatory activity in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14:1669-1680. DOI: 10.2147/COPD.S208977.
    [24]
    MOLDENHAUER LM, SCHJENKEN JE, HOPE CM, et al. Thymus-derived regulatory T cells exhibit Foxp3 epigenetic modification and phenotype attenuation after mating in mice[J]. J Immunol, 2019, 203(3):647-657. DOI: 10.4049/jimmunol.1900084.
    [25]
    BEERMANN JL, THIESLER CT, DRINGENBERG U, et al. Migratory properties of ex vivo expanded regulatory T cells: influence of all-trans retinoic acid and rapamycin[J]. Transpl Immunol, 2017, 45:29-34. DOI: 10.1016/j.trim.2017.08.005.
    [26]
    BLUESTONE JA, TANG Q. Treg cells-the next frontier of cell therapy[J]. Science, 2018, 362(6411):154-155. DOI: 10.1126/science.aau2688.
    [27]
    SORATHIA N, AL-RUBAYE H, ZAL B. The effect of statins on the functionality of CD4 +CD25 +Foxp3+regulatory T-cells in acute coronary syndrome: a systematic review and Meta-analysis of randomised controlled trials in Asian populations[J]. Eur Cardiol, 2019, 14(2):123-129. DOI: 10.15420/ecr.2019.9.2.
    [28]
    MCDONALD-HYMAN C, MULLER JT, LOSCHI M, et al. The vimentin intermediate filament network restrains regulatory T cell suppression of graft-versus-host disease[J]. J Clin Invest, 2018, 128(10):4604-4621. DOI: 10.1172/JCI95713.
    [29]
    AGLE K, VINCENT BG, PIPER C, et al. Bim regulates the survival and suppressive capability of CD8+ Foxp3+ regulatory T cells during murine GVHD[J]. Blood, 2018, 132(4):435-447. DOI: 10.1182/blood-2017-09-807156.
    [30]
    MAREK-TRZONKOWSKA N, MYSLIWIEC M, DOBYSZUK A, et al. Administration of CD4+CD25high CD127- regulatory T cells preserves β-cell function in type 1 diabetes in children[J]. Diabetes Care, 2012, 35(9):1817-1820. DOI: 10.2337/dc12-0038.
    [31]
    DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn' s disease[J]. Gastroenterology, 2012, 143(5):1207-1217. DOI: 10.1053/ j.gastro.2012.07.116.
    [32]
    WEIGERT O, VON SPEE C, UNDEUTSCH R, et al. CD4+Foxp3+regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice[J]. Arthritis Res Ther, 2013, 15(1):R35. DOI: 10.1186/ar4188.
    [33]
    BETTS BC, PIDALA J, KIM J, et al. IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation[J]. Haematologica, 2017, 102(5):948-957. DOI: 10.3324/haematol.2016.153072.
    [34]
    TKACHEV V, FURLAN SN, WATKINS B, et al. Combined OX40L and mTOR blockade controls effector T cell activation while preserving Treg reconstitution after transplant[J]. Sci Transl Med, 2017, 9(408). DOI: 10.1126/scitranslmed.aan3085.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (194) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return