Volume 8 Issue 4
Jul.  2017
Turn off MathJax
Article Contents

doi: 10.3969/j.issn.1674-7445.2017.04.017
  • Received Date: 2017-05-01
    Available Online: 2021-01-19
  • Publish Date: 2017-07-15
  • loading
  • [1]
    Bachoud-Lévi AC, Perrier AL. Regenerative medicine in Huntington' s disease: current status on fetal grafts and prospects for the use of pluripotent stem cell[J]. Rev Neurol (Paris), 2014, 170(12): 749-762. DOI: 10.1016/j.neurol.2014.10.007.
    [2]
    Kefalopoulou Z, Politis M, Piccini P, et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports[J]. JAMA Neurol, 2014, 71(1): 83-87. DOI: 10.1001/jamaneurol.2013.4749.
    [3]
    Mendez I, Viñuela A, Astradsson A, et al. Dopamine neurons implanted into people with Parkinson' s disease survive without pathology for 14 years[J]. Nat Med, 2008, 14(5): 507-509. DOI: 10.1038/nm1752.
    [4]
    Towns CR. The science and ethics of cell-based therapies for Parkinson' s disease[J]. Parkinsonism Relat Disord, 2017, 34: 1-6. DOI: 10.1016/j.parkreldis.2016.10.012.
    [5]
    Lévêque X, Nerrière-Daguin V, Neveu I, et al. Pig neural cells derived from foetal mesencephalon as cell source for intracerebral xenotransplantation[J]. Methods Mol Biol, 2012, 885: 233-243. DOI: 10.1007/978-1-61779-845-0_14.
    [6]
    Hoornaert CJ, Le Blon D, Quarta A, et al. Concise reviews: innate and adaptive immune recognition of allogeneic and xenogeneic cell transplants in the central nervous system[J]. Stem Cells Transl Med, 2017, 6: 1434-1441. DOI: 10.1002/sctm.16-0434.
    [7]
    Secher JO, Liu Y, Petkov S, et al. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals[J]. Anim Reprod Sci, 2017, 178: 40-49. DOI: 10.1016/j.anireprosci.2017.01.007.
    [8]
    Yang JR, Liao CH, Pang CY, et al. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model[J]. Cytotherapy, 2013, 15(2): 201-208. DOI: 10.1016/j.jcyt.2012.09.001.
    [9]
    Chiu CH, Li IH, Weng SJ, et al. PET imaging of serotonin transporters with 4-[(18) F]-ADAM in a Parkinsonian rat model with porcine neural xenografts[J]. Cell Transplant, 2016, 25(2): 301-311. DOI: 10.3727/096368915X688236.
    [10]
    Shamekh R, Mallery J, Newcomb J, et al. Enhancing tyrosine hydroxylase expression and survival of fetal ventral mesencephalon neurons with rat or porcine Sertoli cells in vitro[J]. Brain Res, 2006, 1096(1): 1-10. doi: 10.1016/j.brainres.2006.04.058
    [11]
    Luo XM, Lin H, Wang W, et al. Recovery of neurological functions in non-human primate model of Parkinson' s disease by transplantation of encapsulated neonatal porcine choroid plexus cells[J]. J Parkinsons Dis, 2013, 3(3): 275-291. DOI: 10.3233/JPD-130214.
    [12]
    Lige L, Zengmin T. Transplantation of neural precursor cells in the treatment of Parkinson disease: an efficacy and safety analysis[J]. Turk Neurosurg, 2016, 26(3): 378-383. DOI: 10.5137/1019-5149.JTN.10747-14.4.
    [13]
    Aron Badin R, Vadori M, Vanhove B, et al. Cell therapy for Parkinson' s disease: a translational approach to assess the role of local and systemic immunosuppression[J]. Am J Transplant, 2016, 16(7): 2016-2029. DOI: 10.1111/ajt.13704.
    [14]
    Deacon T, Schumacher J, Dinsmore J, et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson' s disease[J]. Nat Med, 1997, 3(3): 350-353. doi: 10.1038/nm0397-350
    [15]
    Fink JS, Schumacher JM, Ellias SL, et al. Porcine xenografts in Parkinson' s disease and Huntington' s disease patients: preliminary results[J]. Cell Transplant, 2000, 9(2): 273-278. doi: 10.1177/096368970000900212
    [16]
    Michel-Monigadon D, Bonnamain V, Nerrière-Daguin V, et al. Trophic and immunoregulatory properties of neural precursor cells: benefit for intracerebral transplantation[J]. Exp Neurol, 2011, 230(1): 35-47. DOI: 10.1016/j.expneurol.2010.04.021.
    [17]
    Redmond DE Jr, Vinuela A, Kordower JH, et al. Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson' s disease[J]. Neurobiol Dis, 2008, 29(1): 103-116. doi: 10.1016/j.nbd.2007.08.008
    [18]
    Lee SR, Lee HJ, Cha SH, et al. Long-term survival and differentiation of human neural stem cells in nonhuman primate brain with no immunosuppression[J]. Cell Transplant, 2015, 24(2): 191-201. DOI: 10.3727/096368914X678526.
    [19]
    Emborg ME, Zhang Z, Joers V, et al. Intracerebral transplantation of differentiated human embryonic stem cells to hemiparkinsonian monkeys[J]. Cell Transplant, 2013, 22(5): 831-838. DOI: 10.3727/096368912X647144.
    [20]
    Michel-Monigadon D, Brachet P, Neveu I, et al. Immunoregulatory properties of neural stem cells[J]. Immunotherapy, 2011, 3(4 Suppl): 39-41. DOI: 10.2217/imt.11.49.
    [21]
    Mathieux E, Nerrière-Daguin V, Lévèque X, et al. IgG response to intracerebral xenotransplantation: specificity and role in the rejection of porcine neurons[J]. Am J Transplant, 2014, 14(5): 1109-1119. DOI: 10.1111/ajt.12656.
    [22]
    Barker RA, Ratcliffe E, McLaughlin M, et al. A role for complement in the rejection of porcine ventral mesencephalic xenografts in a rat model of Parkinson' s disease[J]. J Neurosci, 2000, 20(9): 3415-3424. https://www.researchgate.net/publication/12538555_A_role_for_complement_in_the_rejection_of_porcine_ventral_mesencephalic_xenografts_in_a_rat_model_of_Parkinson%27_disease
    [23]
    Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9): 623-635. DOI: 10.1038/nri3265.
    [24]
    Romo-González T, Chavarría A, Pérez-H J. Central nervous system: a modified immune surveillance circuit?[J]. Brain Behav Immun, 2012, 26(6): 823-829. DOI: 10.1016/j.bbi.2012.01.016.
    [25]
    Redmond DE Jr, Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson' s model is associated with multiple homeostatic effects of human neural stem cells[J]. Proc Natl Acad Sci U S A, 2007, 104(29): 12175-12180. doi: 10.1073/pnas.0704091104
    [26]
    Islamov RR, Rizvanov AA, Mukhamedyarov MA, et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule[J]. Curr Gene Ther, 2015, 15(3): 266-276. doi: 10.2174/1566523215666150126122317
    [27]
    Daadi MM, Grueter BA, Malenka RC, et al. Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson' s disease[J]. PLoS One, 2012, 7(7): e41120.DOI: 10.1371/journal.pone.0041120.
    [28]
    Tafazoli A. Cyclosporine use in hematopoietic stem cell transplantation: pharmacokinetic approach[J]. Immunotherapy, 2015, 7(7): 811-836. DOI: 10.2217/imt.15.47.
    [29]
    Ebrahimi F, Koch M, Pieroh P, et al. Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation[J]. J Neuroinflammation, 2012, 9:89. DOI: 10.1186/1742-2094-9-89.
    [30]
    Martin C, Plat M, Nerriére-Daguin V, et al. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation[J]. Transgenic Res, 2005, 14(4): 373-384. doi: 10.1007/s11248-004-7268-4
    [31]
    Lévêque X, Mathieux E, Nerrière-Daguin V, et al. Local control of the host immune response performed with mesenchymal stem cells: perspectives for functional intracerebral xenotransplantation[J]. J Cell Mol Med, 2015, 19(1): 124-134. DOI: 10.1111/jcmm.12414.
    [32]
    Haidet-Phillips AM, Doreswamy A, Gross SK, et al. Human glial progenitor engraftment and gene expression is independent of the ALS environment[J]. Exp Neurol, 2015, 264: 188-199. DOI: 10.1016/j.expneurol.2014.12.011.
    [33]
    Chen H, Qian K, Chen W, et al. Human-derived neural progenitors functionally replace astrocytes in adult mice[J]. J Clin Invest, 2015, 125(3): 1033-1042.DOI: 10.1172/JCI69097.
    [34]
    Grealish S, Diguet E, Kirkeby A, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson' s disease[J]. Cell Stem Cell, 2014, 15(5): 653-665. DOI: 10.1016/j.stem.2014.09.017.
    [35]
    Verdier JM, Acquatella I, Lautier C, et al. Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases[J]. Front Neurosci, 2015, 9: 64. DOI: 10.3389/fnins.2015.00064.
    [36]
    Hardman CD, Henderson JM, Finkelstein DI, et al. Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei[J]. J Comp Neurol, 2002, 445(3): 238-255. doi: 10.1002/(ISSN)1096-9861
    [37]
    Glaab E, Schneider R. Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson' s disease[J]. Neurobiol Dis, 2015, 74: 1-13. DOI: 10.1016/j.nbd.2014.11.002.
    [38]
    Madhavan L, Daley BF, Davidson BL, et al. Sonic hedgehog controls the phenotypic fate and therapeutic efficacy of grafted neural precursor cells in a model of nigrostriatal neurodegeneration[J]. PLoS One, 2015, 10(9): e0137136. DOI: 10.1371/journal.pone.0137136.
    [39]
    Gowing G, Shelley B, Staggenborg K, et al. Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats[J]. Neuroreport, 2014, 25(6): 367-372. DOI: 10.1097/WNR.0000000000000092.
    [40]
    Al Jumah MA, Abumaree MH. The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS)[J]. Int J Mol Sci, 2012, 13(7): 9298-9331. DOI: 10.3390/ijms13079298.
    [41]
    van Gorp S, Leerink M, Kakinohana O, et al. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation[J]. Stem Cell Res Ther, 2013, 4(3): 57. DOI: 10.1186/scrt209.
    [42]
    Acharya MM, Christie LA, Hazel TG, et al. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation[J]. Cell Transplant, 2014, 23(10): 1255-1266. DOI: 10.3727/096368913X670200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (243) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return