留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体在肺移植排斥反应中的作用研究进展

蒋冠宇, 陈思远, 徐永瑞, 等. 外泌体在肺移植排斥反应中的作用研究进展[J]. 器官移植, 2022, 13(4): 530-536. doi: 10.3969/j.issn.1674-7445.2022.04.018
引用本文: 蒋冠宇, 陈思远, 徐永瑞, 等. 外泌体在肺移植排斥反应中的作用研究进展[J]. 器官移植, 2022, 13(4): 530-536. doi: 10.3969/j.issn.1674-7445.2022.04.018
Jiang Guanyu, Chen Siyuan, Xu Yongrui, et al. Research progress on the role of exosome in rejection after lung transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 530-536. doi: 10.3969/j.issn.1674-7445.2022.04.018
Citation: Jiang Guanyu, Chen Siyuan, Xu Yongrui, et al. Research progress on the role of exosome in rejection after lung transplantation[J]. ORGAN TRANSPLANTATION, 2022, 13(4): 530-536. doi: 10.3969/j.issn.1674-7445.2022.04.018

外泌体在肺移植排斥反应中的作用研究进展

doi: 10.3969/j.issn.1674-7445.2022.04.018
基金项目: 

江苏省自然科学基金青年项目 BK20210068

详细信息
    作者简介:
    通讯作者:

    郑明峰,男,1968年生,主任医师,研究方向为肺移植,Email:zhengmfmedical@126.com

    毛文君,男,1987年生,副主任医师,研究方向为肺移植,Email:maowenjun1@126.com

  • 中图分类号: R617, R563

Research progress on the role of exosome in rejection after lung transplantation

More Information
  • 摘要: 肺移植术后排斥反应包括急性排斥反应(AR)和以慢性移植肺功能障碍(CLAD)为主要表现的慢性排斥反应,是影响同种异体移植物长期存活的主要因素。外泌体是真核生物细胞间通讯的一种细胞外纳米囊泡,可以携带复杂生物学信息,参与各种生理、病理过程,已成为排斥反应中的重要免疫介质,通过多种途径调控排斥反应的发生发展,在排斥反应的监测和治疗中亦发挥着关键作用。本文就肺移植术后排斥反应的类型、外泌体调控排斥反应的机制、外泌体作为生物标志物及其在排斥反应治疗中的应用做一综述,旨在为肺移植术后排斥反应的综合诊治提供新的方向。

     

  • 图  1  外泌体介导的同种异体识别途径

    注:①为直接同种异体识别途径;②为间接同种异体识别途径;③为半直接同种异体识别途径;④为固有同种异体识别途径。

    Figure  1.  Exosome-mediated allogeneic recognition pathway

    表  1  外泌体标志物在肺移植术后不同状态下的表达情况

    Table  1.   Expression of exosome markers in different conditions after lung transplantation

    外泌体标志物 类别 稳定状态 AR RAS BOS 临床意义
    CⅡTA[4] MHCⅡ型 不表达 表达 高表达 中表达 介导适应性免疫应答及T细胞的选择活化过程
    20S蛋白酶体[12] 蛋白酶体 低表达 表达 高表达 中表达 参与适应性免疫反应,介导抗原提呈过程,促进NF-κB生成
    CD80[18] B7 不表达 表达 表达 表达 协同刺激T细胞增殖,诱导免疫应答,介导细胞毒反应
    CD86[18] 不表达 表达 表达 表达
    CD40[18] TNF或TNFR 不表达 表达 表达 表达 促进细胞因子和趋化因子产生,诱导共刺激分子表达,促进抗原的交叉提呈
    Ⅴ型胶原[20] 自身抗原 不表达 表达 高表达 高表达 诱导细胞免疫反应,促进自身抗体形成
    K-α1微管蛋白[20] 不表达 表达 中表达 高表达
    HIF-1α[29] HIF-1 不表达 表达 表达 表达 参与能量代谢、血管生成,增强对缺氧环境的代谢适应性
    IRAK1[29] TLR 不表达 表达 表达 表达 参与免疫识别,调控细胞因子分泌,影响适应性免疫应答
    MyD88[29] 不表达 表达 表达 表达
    NF-κB[29] 转录因子 不表达 表达 高表达 中表达 介导炎症反应,参与免疫应答
    miR-144[30] miRNA 不表达 不表达 不表达 高表达 诱导炎症反应、内皮激活、AMR和Th17分化
    PIGR[32] 糖蛋白 低表达 表达 高表达 中表达 结合并运输聚合免疫球蛋白至黏膜表面,引起内皮活化,诱导免疫应答
    HLA-DQ[32] HLAⅡ型 低表达 表达 高表达 中表达 将抗原提呈给CD 4+T细胞,促进T细胞增殖,刺激B细胞产生体液免疫
    HLA-DR[32] 低表达 表达 高表达 中表达
    注:①TNF或TNFR为肿瘤坏死因子或肿瘤坏死因子受体。
    下载: 导出CSV
  • [1] AIGNER C. Current developments in lung transplantation[J]. Pathologe, 2019, 40(Suppl 3): 363-365. DOI: 10.1007/s00292-019-00690-x.
    [2] CHUNG PA, DILLING DF. Immunosuppressive strategies in lung transplantation[J]. Ann Transl Med, 2020, 8(6): 409. DOI: 10.21037/atm.2019.12.117.
    [3] VAN DER MARK SC, HOEK RAS, HELLEMONS ME. Developments in lung transplantation over the past decade[J]. Eur Respir Rev, 2020, 29(157): 190132. DOI: 10.1183/16000617.0132-2019.
    [4] MOHANAKUMAR T, SHARMA M, BANSAL S, et al. A novel mechanism for immune regulation after human lung transplantation[J]. J Thorac Cardiovasc Surg, 2019, 157(5): 2096-2106. DOI: 10.1016/j.jtcvs.2018.12.105.
    [5] 姚培学, 郭小旭, 贺艳飞, 等. 外泌体microRNAs作为肺部疾病诊断性生物标志物的研究进展[J]. 实用医学杂志, 2020, 36(13): 1839-1843. DOI: 10.3969/j.issn.1006-5725.2020.13.030.

    YAO PX, GUO XX, HE YF, et al. The research progress of the exosomal microRNAs as biomarkers of lung diseases[J]. J Pract Med, 2020, 36(13): 1839-1843. DOI: 10.3969/j.issn.1006-5725.2020.13.030.
    [6] HSIAO HM, SCOZZI D, GAUTHIER JM, et al. Mechanisms of graft rejection after lung transplantation[J]. Curr Opin Organ Transplant, 2017, 22(1): 29-35. DOI: 10.1097/MOT.0000000000000371.
    [7] PARULEKAR AD, KAO CC. Detection, classification, and management of rejection after lung transplantation[J]. J Thorac Dis, 2019, 11(Suppl 14): S1732-S1739. DOI: 10.21037/jtd.2019.03.83.
    [8] 中华医学会器官移植学分会. 中国肺移植免疫抑制治疗及排斥反应诊疗规范(2019版)[J/CD]. 中华移植杂志(电子版), 2019, 13(2): 94-98. DOI: 10.3877/cma.j.issn.1674-3903.2019.02.004.

    Branch of Organ Transplantation of Chinese Medical Association. Diagnosis and treatment specification for immunosuppressive therapy and rejection of lung transplantation in China (2019 edition)[J/CD]. Chin J Transplant (Electr Edit), 2019, 13(2): 94-98. DOI: 10.3877/cma.j.issn.1674-3903.2019.02.004.
    [9] 张稷. 2016国际心肺移植协会共识: 肺移植术后抗体介导的排斥反应[J/CD]. 实用器官移植电子杂志, 2017, 5(5): 321-328. DOI: 10.3969/j.issn.2095-5332.2017.05.001.

    ZHANG J. 2016 International Heart and Lung Transplantation Association consensus: antibody-mediated rejection after lung transplantation[J/CD]. Pract J Organ Transplant (Electr Vers), 2017, 5(5): 321-328. DOI: 10.3969/j.issn.2095-5332.2017.05.001.
    [10] NEUHAUS K, HOHLFELDER B, BOLLINGER J, et al. Antibody-mediated rejection management following lung transplantation[J]. Ann Pharmacother, 2022, 56(1): 60-64. DOI: 10.1177/10600280211012410.
    [11] VERLEDEN GM, VOS R, VANAUDENAERDE B, et al. Current views on chronic rejection after lung transplantation[J]. Transpl Int, 2015, 28(10): 1131-1139. DOI: 10.1111/tri.12579.
    [12] SURESHBABU A, FLEMING T, MOHANAKUMAR T. Autoantibodies in lung transplantation[J]. Transpl Int, 2020, 33(1): 41-49. DOI: 10.1111/tri.13487.
    [13] BENDEN C, HAUGHTON M, LEONARD S, et al. Therapy options for chronic lung allograft dysfunction-bronchiolitis obliterans syndrome following first-line immunosuppressive strategies: a systematic review[J]. J Heart Lung Transplant, 2017, 36(9): 921-933. DOI: 10.1016/j.healun.2017.05.030.
    [14] MIRZAKHANI M, MOHAMMADNIA-AFROUZI M, SHAHBAZI M, et al. The exosome as a novel predictive/diagnostic biomarker of rejection in the field of transplantation[J]. Clin Immunol, 2019, 203: 134-141. DOI: 10.1016/j.clim.2019.04.010.
    [15] KONSTANTINOV IE, YONG MS. Exosome signaling: a ubiquitous process in rejection and regeneration?[J]. J Thorac Cardiovasc Surg, 2018, 155(6): 2490-2491. DOI: 10.1016/j.jtcvs.2018.01.021.
    [16] PEGTEL DM, GOULD SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88: 487-514. DOI: 10.1146/annurev-biochem-013118-111902.
    [17] GREGSON AL, HOJI A, INJEAN P, et al. Altered exosomal RNA profiles in bronchoalveolar lavage from lung transplants with acute rejection[J]. Am J Respir Crit Care Med, 2015, 192(12): 1490-1503. DOI: 10.1164/rccm.201503-0558OC.
    [18] RAVICHANDRAN R, BANSAL S, RAHMAN M, et al. The role of donor-derived exosomes in lung allograft rejection[J]. Hum Immunol, 2019, 80(8): 588-594. DOI: 10.1016/j.humimm.2019.03.012.
    [19] SHARMA M, RAVICHANDRAN R, BANSAL S, et al. Tissue-associated self-antigens containing exosomes: role in allograft rejection[J]. Hum Immunol, 2018, 79(9): 653-658. DOI: 10.1016/j.humimm.2018.06.005.
    [20] GUNASEKARAN M, XU Z, NAYAK DK, et al. Donor-derived exosomes with lung self-antigens in human lung allograft rejection[J]. Am J Transplant, 2017, 17(2): 474-484. DOI: 10.1111/ajt.13915.
    [21] GONZALEZ-NOLASCO B, WANG M, PRUNEVIEILLE A, et al. Emerging role of exosomes in allorecognition and allograft rejection[J]. Curr Opin Organ Transplant, 2018, 23(1): 22-27. DOI: 10.1097/MOT.0000000000000489.
    [22] HWANG B, BRYERS J, MULLIGAN MS. Potential role of exosome-based allorecognition pathways involved in lung transplant rejection[J]. J Thorac Cardiovasc Surg, 2021, 161(2): e129-e134. DOI: 10.1016/j.jtcvs.2020.04.183.
    [23] MATTKE J, VASU S, DARDEN CM, et al. Role of exosomes in islet transplantation[J]. Front Endocrinol (Lausanne), 2021, 12: 681600. DOI: 10.3389/fendo.2021.681600.
    [24] LIU Q, ROJAS-CANALES DM, DIVITO SJ, et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response[J]. J Clin Invest, 2016, 126(8): 2805-2820. DOI: 10.1172/JCI84577.
    [25] BURLINGHAM WJ. Exosomes: the missing link between microchimerism and acquired tolerance?[J]. Chimerism, 2014, 5(3/4): 63-67. DOI: 10.1080/19381956.2015.1082026.
    [26] ELASHIRY M, ELSAYED R, CUTLER CW. Exogenous and endogenous dendritic cell-derived exosomes: lessons learned for immunotherapy and disease pathogenesis[J]. Cells, 2021, 11(1): 115. DOI: 10.3390/cells11010115.
    [27] PANG XL, WANG ZG, LIU L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924. DOI: 10.18632/aging.102346.
    [28] LEMA DA, BURLINGHAM WJ. Role of exosomes in tumour and transplant immune regulation[J]. Scand J Immunol, 2019, 90(5): e12807. DOI: 10.1111/sji.12807.
    [29] GUNASEKARAN M, SHARMA M, HACHEM R, et al. Circulating exosomes with distinct properties during chronic lung allograft rejection[J]. J Immunol, 2018, 200(8): 2535-2541. DOI: 10.4049/jimmunol.1701587.
    [30] RAHMAN M, SURESHBABU A, TOKMAN S, et al. Chronic lung allograft dysfunction: immune responses induced by circulating exosomes with lung-associated self-antigens[J]. Crit Rev Immunol, 2019, 39(2): 123-134. DOI: 10.1615/CritRevImmunol.2019030635.
    [31] VALLABHAJOSYULA P, KORUTLA L, HABERTHEUER A, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue[J]. J Clin Invest, 2017, 127(4): 1375-1391. DOI: 10.1172/JCI87993.
    [32] BANSAL S, ARJUNA A, PERINCHERI S, et al. Restrictive allograft syndrome vs bronchiolitis obliterans syndrome: immunological and molecular characterization of circulating exosomes[J]. J Heart Lung Transplant, 2022, 41(1): 24-33. DOI: 10.1016/j.healun.2021.09.001.
    [33] HABERTHEUER A, RAM C, SCHMIERER M, et al. Circulating donor lung-specific exosome profiles enable noninvasive monitoring of acute rejection in a rodent orthotopic lung transplantation model[J]. Transplantation, 2022, 106(4): 754-756. DOI: 10.1097/TP.0000000000003820.
    [34] MONGUIÓ-TORTAJADA M, LAUZURICA-VALDEMOROS R, BORRÀS FE. Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles[J]. Front Immunol, 2014, 5: 416. DOI: 10.3389/fimmu.2014.00416.
    [35] LEE BC, KANG I, YU KR. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes[J]. J Clin Med, 2021, 10(4): 711. DOI: 10.3390/jcm10040711.
    [36] RAHMATI S, SHOJAEI F, SHOJAEIAN A, et al. An overview of current knowledge in biological functions and potential theragnostic applications of exosomes[J]. Chem Phys Lipids, 2020, 226: 104836. DOI: 10.1016/j.chemphyslip.2019.104836.
    [37] YU X, HUANG C, SONG B, et al. CD4+CD25+regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model[J]. Cell Immunol, 2013, 285(1/2): 62-68. DOI: 10.1016/j.cellimm.2013.06.010.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  335
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 网络出版日期:  2022-07-14
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回