留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾移植排斥反应免疫风险评估与监测

郑瑾 薛武军

郑瑾, 薛武军. 肾移植排斥反应免疫风险评估与监测[J]. 器官移植, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002
引用本文: 郑瑾, 薛武军. 肾移植排斥反应免疫风险评估与监测[J]. 器官移植, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002
Zheng Jin, Xue Wujun. Assessment and monitoring of immune risk of kidney transplantation rejection[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002
Citation: Zheng Jin, Xue Wujun. Assessment and monitoring of immune risk of kidney transplantation rejection[J]. ORGAN TRANSPLANTATION, 2021, 12(6): 643-650. doi: 10.3969/j.issn.1674-7445.2021.06.002

肾移植排斥反应免疫风险评估与监测

doi: 10.3969/j.issn.1674-7445.2021.06.002
基金项目: 

国家自然科学基金面上项目 81670682

详细信息
    作者简介:

    郑瑾,女,1973年生,博士,研究员,研究方向为器官移植,Email:jzheng@xjtu.edu.cn

    薛武军,一级主任医师,二级教授,博士研究生导师,长期致力于器官移植的临床和基础研究工作。现任西安交通大学器官移植研究所所长、第一附属医院肾脏病医院院长,兼任中华医学会器官移植学分会候任主任委员、中国人体器官捐献与移植委员会委员、《器官移植》杂志副总编辑。被评为国家重点学科带头人、陕西省“三秦学者”、西安交通大学“领军学者”。入选国家“百千万人才工程”第一层次, 为国家突出贡献中青年专家,享受国务院有突出贡献专家特殊政府津贴。获得国家科技进步奖二等奖

    通讯作者:

    薛武军,Email:xwujun16@xjtu.edu.cn

  • 中图分类号: R617, R392.4

Assessment and monitoring of immune risk of kidney transplantation rejection

More Information
  • 摘要: 肾移植是终末期肾衰竭最有效的治疗方法。虽然目前移植肾早期存活率及功能恢复都得到了很大的提高,但是移植肾长期存活仍有待改善。免疫因素所引发的抗体介导的排斥反应(AMR)及T细胞介导的排斥反应(TCMR)仍是导致移植肾衰竭的最主要因素。本文对肾移植受者等待移植期间、肾移植术前和术后3个阶段的免疫风险评估及监测内容进行了综述,通过对肾移植术前受者体内预存人类白细胞抗原(HLA)抗体和非HLA抗体、HLA匹配、淋巴细胞毒交叉配型、免疫记忆细胞等的评估,对肾移植术后受者进行移植肾程序性活组织检查,HLA抗体和非HLA抗体及供者来源性细胞游离DNA(dd-cfDNA)的监测,制定个体化免疫抑制治疗及监测方案,预防排斥反应发生,及时发现和诊断排斥反应,根据免疫监测结果避免无效治疗或过度治疗,从而优化移植物长期存活。

     

  • [1] ALI AA, ALMUKHTAR SE, ABD KH, et al. The causes and frequency of kidney allograft failure in a low-resource setting: observational data from Iraqi Kurdistan[J]. BMC Nephrol, 2021, 22(1): 272. DOI: 10.1186/s12882-021-02486-9.
    [2] MILLÁN O, ROVIRA J, GUIRADO L, et al. Advantages of plasmatic CXCL-10 as a prognostic and diagnostic biomarker for the risk of rejection and subclinical rejection in kidney transplantation[J]. Clin Immunol, 2021, 229: 108792. DOI: 10.1016/j.clim.2021.108792.
    [3] CHOI J, CHANDRAKER A. Immunologic risk assessment and approach to immunosuppression regimen in kidney transplantation[J]. Clin Lab Med, 2019, 39(4): 643-656. DOI: 10.1016/j.cll.2019.07.010.
    [4] LAN JH, KADATZ M, CHANG DT, et al. Pretransplant calculated panel reactive antibody in the absence of donor-specific antibody and kidney allograft survival[J]. Clin J Am Soc Nephrol, 2021, 16(2): 275-283. DOI: 10.2215/CJN.13640820.
    [5] KEITH DS, VRANIC GM. Approach to the highly sensitized kidney transplant candidate[J]. Clin J Am Soc Nephrol, 2016, 11(4): 684-693. DOI: 10.2215/CJN.05930615.
    [6] SÜSAL C, MORATH C. Virtual PRA replaces traditional PRA: small change but significantly more justice for sensitized patients[J]. Transpl Int, 2015, 28(6): 708-709. DOI: 10.1111/tri.12572.
    [7] HUBER L, LACHMANN N, NIEMANN M, et al. Pretransplant virtual PRA and long-term outcomes of kidney transplant recipients[J]. Transpl Int, 2015, 28(6): 710-719. DOI: 10.1111/tri.12533.
    [8] MALHEIRO J, TAFULO S, DIAS L, et al. Analysis of preformed donor-specific anti-HLA antibodies characteristics for prediction of antibody-mediated rejection in kidney transplantation[J]. Transpl Immunol, 2015, 32(2): 66-71. DOI: 10.1016/j.trim.2015.01.002.
    [9] ALVAREZ-MÁRQUEZ A, AGUILERA I, GENTIL MA, et al. Donor-specific antibodies against HLA, MICA, and GSTT1 in patients with allograft rejection and C4d deposition in renal biopsies[J]. Transplantation, 2009, 87(1): 94-99. DOI: 10.1097/TP.0b013e31818bd790.
    [10] BUTLER CL, HICKEY MJ, JIANG N, et al. Discovery of non-HLA antibodies associated with cardiac allograft rejection and development and validation of a non-HLA antigen multiplex panel: from bench to bedside[J]. Am J Transplant, 2020, 20(10): 2768-2780. DOI: 10.1111/ajt.15863.
    [11] TAMBUR AR, CAMPBELL P, CHONG AS, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2019 working group meeting report[J]. Am J Transplant, 2020, 20(10): 2652-2668. DOI: 10.1111/ajt.15937.
    [12] SENEV A, COEMANS M, LERUT E, et al. Eplet mismatch load and de novo occurrence of donor-specific anti-HLA antibodies, rejection, and graft failure after kidney transplantation: an observational cohort study[J]. J Am Soc Nephrol, 2020, 31(9): 2193-2204. DOI: 10.1681/ASN.2020010019.
    [13] PHILOGENE MC, AMIN A, ZHOU S, et al. Eplet mismatch analysis and allograft outcome across racially diverse groups in a pediatric transplant cohort: a singlecenter analysis[J]. Pediatr Nephrol, 2020, 35(1): 83-94. DOI: 10.1007/s00467-019-04344-1.
    [14] TAFULO S, MALHEIRO J, SANTOS S, et al. Degree of HLA class Ⅱ eplet mismatch load improves prediction of antibody-mediated rejection in living donor kidney transplantation[J]. Hum Immunol, 2019, 80(12): 966-975. DOI: 10.1016/j.humimm.2019.09.010.
    [15] MALLON DH, KLING C, ROBB M, et al. Predicting humoral alloimmunity from differences in donor and recipient HLA surface electrostatic potential[J]. J Immunol, 2018, 201(12): 3780-3792. DOI: 10.4049/jimmunol.1800683.
    [16] TAMBUR AR, MCDOWELL H, HOD-DVORAI R, et al. The quest to decipher HLA immunogenicity: telling friend from foe[J]. Am J Transplant, 2019, 19(10): 2910- 2925. DOI: 10.1111/ajt.15489.
    [17] ALTHAF MM, EL KOSSI M, JIN JK, et al. Human leukocyte antigen typing and crossmatch: a comprehensive review[J]. World J Transplant, 2017, 7(6): 339-348. DOI: 10.5500/wjt.v7.i6.339.
    [18] KOEFOED-NIELSEN P, MØLLER BK. Donor-specific anti-HLA antibodies by solid phase immunoassays: advantages and technical concerns[J]. Int Rev Immunol, 2019, 38(3): 95-105. DOI: 10.1080/08830185.2018.1525367.
    [19] MORRIS AB, SULLIVAN HC, KRUMMEY SM, et al. Out with the old, in with the new: virtual versus physical crossmatching in the modern era[J]. HLA, 2019, 94(6): 471-481. DOI: 10.1111/tan.13693.
    [20] TAMBUR AR, CAMPBELL P, CLAAS FH, et al. Sensitization in Transplantation: Assessment of Risk (STAR) 2017 working group meeting report[J]. Am J Transplant, 2018, 18(7): 1604-1614. DOI: 10.1111/ajt.14752.
    [21] UBARA Y, KAWAGUCHI T, NAGASAWA T, et al. Kidney biopsy guidebook 2020 in Japan[J]. Clin Exp Nephrol, 2021, 25(4): 325-364. DOI: 10.1007/s10157-020-01986-6.
    [22] SCHINSTOCK CA, COSIO F, CHEUNGPASITPORN W, et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss[J]. Am J Transplant, 2017, 17(6): 1574- 1584. DOI: 10.1111/ajt.14161.
    [23] FU MS, LIM SJ, JALALONMUHALI M, et al. Clinical significance of renal allograft protocol biopsies: a single tertiary center experience in Malaysia[J]. J Transplant, 2019: 9153875. DOI: 10.1155/2019/9153875.
    [24] MUCZYNSKI KA, LECA N, ANDERSON AE, et al. Multicolor flow cytometry and cytokine analysis provides enhanced information on kidney transplant biopsies[J]. Kidney Int Rep, 2018, 3(4): 956-969. DOI: 10.1016/j.ekir.2018.02.012.
    [25] SAWITZKI B, HARDEN PN, REINKE P, et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials[J]. Lancet, 2020, 395(10237): 1627-1639. DOI: 10.1016/S0140-6736(20)30167-7.
    [26] BECKETT J, HESTER J, ISSA F, et al. Regulatory B cells in transplantation: roadmaps to clinic[J]. Transpl Int, 2020, 33(11): 1353-1368. DOI: 10.1111/tri.13706.
    [27] ZHANG R. Donor-specific antibodies in kidney transplant recipients[J]. Clin J Am Soc Nephrol, 2018, 13(1): 182-192. DOI: 10.2215/CJN.00700117.
    [28] TIMOFEEVA OA. Donor-specific HLA antibodies as biomarkers of transplant rejection[J]. Clin Lab Med, 2019, 39(1): 45-60. DOI: 10.1016/j.cll.2018.10.007.
    [29] HOURMANT M, CESBRON-GAUTIER A, TERASAKI PI, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation[J]. J Am Soc Nephrol, 2005, 16(9): 2804-2812. DOI: 10.1681/ASN.2004121130.
    [30] MALHEIRO J, TAFULO S, DIAS L, et al. Determining donor-specific antibody C1q-binding ability improves the prediction of antibody-mediated rejection in human leucocyte antigen-incompatible kidney transplantation[J]. Transpl Int, 2017, 30(4): 347-359. DOI: 10.1111/tri.12873.
    [31] LEFAUCHEUR C, VIGLIETTI D, BENTLEJEWSKI C, et al. IgG donor-specific anti-human HLA antibody subclasses and kidney allograft antibody-mediated injury[J]. J Am Soc Nephrol, 2016, 27(1): 293-304. DOI: 10.1681/ASN.2014111120.
    [32] RAMPERSAD C, SHAW J, GIBSON IW, et al. Early antibody-mediated kidney transplant rejection associated with anti-vimentin antibodies: a case report[J]. Am J Kidney Dis, 2020, 75(1): 138-143. DOI: 10.1053/j.ajkd.2019.06.010.
    [33] CHOWDHRY M, MAKROO RN, SINGH M, et al. Role of anti-MICA antibodies in graft survival of renal transplant recipients of India[J]. J Immunol Res, 2018: 3434050. DOI: 10.1155/2018/3434050.
    [34] AKGUL SU, OGUZ FS, ÇALIŞKAN Y, et al. The effect of glutathion S-transferase polymoprhisms and antiGSTT1 antibodies on allograft functions in recipients of renal transplant[J]. Transplant Proc, 2012, 44(6): 1679- 1684. DOI: 10.1016/j.transproceed.2012.04.004.
    [35] LEFAUCHEUR C, VIGLIETTI D, BOUATOU Y, et al. Non-HLA agonistic anti-angiotensin Ⅱ type 1 receptor antibodies induce a distinctive phenotype of antibodymediated rejection in kidney transplant recipients[J]. Kidney Int, 2019, 96(1): 189-201. DOI: 10.1016/j.kint.2019.01.030.
    [36] CRESPO M, LLINÀS-MALLOL L, REDONDOPACHÓN D, et al. Non-HLA antibodies and epitope mismatches in kidney transplant recipients with histological antibody-mediated rejection[J]. Front Immunol, 2021, 12: 703457. DOI: 10.3389/fimmu.2021.703457.
    [37] SUTHERLAND SM, LI L, SIGDEL TK, et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients[J]. Kidney Int, 2009, 76(12): 1277-1283. DOI: 10.1038/ki.2009.384.
    [38] BLOOM RD, BROMBERG JS, POGGIO ED, et al. Cellfree DNA and active rejection in kidney allografts[J]. J Am Soc Nephrol, 2017, 28(7): 2221-2232. DOI: 10.1681/ASN.2016091034.
    [39] THONGPRAYOON C, VAITLA P, CRAICI IM, et al. The use of donor-derived cell-free DNA for assessment of allograft rejection and injury status[J]. J Clin Med, 2020, 9(5): 1480. DOI: 10.3390/jcm9051480.
    [40] VEERMAN RE, GÜÇLÜLER AKPINAR G, ELDH M, et al. Immune cell-derived extracellular vesicles - functions and therapeutic applications[J]. Trends Mol Med, 2019, 25(5): 382-394. DOI: 10.1016/j.molmed.2019.02.003.
    [41] BENICHOU G, WANG M, AHRENS K, et al. Extracellular vesicles in allograft rejection and tolerance[J]. Cell Immunol, 2020, 349: 104063. DOI: 10.1016/j.cellimm.2020.104063.
    [42] TAKADA Y, KAMIMURA D, JIANG JJ, et al. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier[J]. Int Immunol, 2020, 32(10): 653- 662. DOI: 10.1093/intimm/dxaa032.
    [43] MATZ M, HEINRICH F, LORKOWSKI C, et al. MicroRNA regulation in blood cells of renal transplanted patients with interstitial fibrosis/tubular atrophy and antibody-mediated rejection[J]. PLoS One, 2018, 13(8): e0201925. DOI: 10.1371/journal.pone.0201925.
    [44] NARIMAN-SALEH-FAM Z, BASTAMI M, ARDALAN M, et al. Cell-free microRNA-148a is associated with renal allograft dysfunction: implication for biomarker discovery[J]. J Cell Biochem, 2019, 120(4): 5737-5746. DOI: 10.1002/jcb.27860.
    [45] VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46: 463-472. DOI: 10.1016/j.ebiom.2019.07.028.
    [46] DIEBOLDER CA, BEURSKENS FJ, DE JONG RN, et al. Complement is activated by IgG hexamers assembled at the cell surface[J]. Science, 2014, 343(6176): 1260- 1263. DOI: 10.1126/science.1248943.
    [47] LAN JH, TINCKAM K. Clinical utility of complement dependent assays in kidney transplantation[J]. Transplantation, 2018, 102(1S Suppl 1): S14-S22. DOI: 10.1097/TP.0000000000001819.
    [48] WEITZNER BD, DUNBRACK RL JR, GRAY JJ. The origin of CDR H3 structural diversity[J]. Structure, 2015, 23(2): 302-311. DOI: 10.1016/j.str.2014.11.010.
  • 加载中
图(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  26
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回