留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巨噬细胞与肾移植

郑龙, 蔡明. 巨噬细胞与肾移植[J]. 器官移植, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139
引用本文: 郑龙, 蔡明. 巨噬细胞与肾移植[J]. 器官移植, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139
Zheng Long, Cai Ming. Macrophages and kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139
Citation: Zheng Long, Cai Ming. Macrophages and kidney transplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(5): 643-648. doi: 10.3969/j.issn.1674-7445.2023139

巨噬细胞与肾移植

doi: 10.3969/j.issn.1674-7445.2023139
基金项目: 浙江省重点研发计划(2022C03127);浙江大学医学院附属第二医院种子基金(ZZ98972022)
详细信息
    作者简介:
    通讯作者:

    蔡明(ORCID:0009-0008-7187-8490),Email:caiming@zju.edu.cn

  • 中图分类号: R617, R392.12

Macrophages and kidney transplantation

More Information
  • 摘要: 肾移植是终末期肾病患者的最佳治疗方案,但移植肾远期存活仍是临床上面临的重要难题。肾缺血-再灌注损伤(IRI)和移植肾排斥反应被认为是影响移植肾远期存活的重要因素,受固有免疫和适应性免疫细胞调控。巨噬细胞是固有免疫细胞中一种,可协助启动适应性免疫,分为M1型巨噬细胞、M2型巨噬细胞和调节性巨噬细胞。先前研究揭示M1型巨噬细胞加重肾IRI和急性T细胞介导的排斥反应(TCMR);而M2型巨噬细胞减轻肾IRI和急性TCMR,但与抗体介导的排斥反应(AMR)呈正相关;调节性巨噬细胞是巨噬细胞一种特殊亚群,可诱导移植免疫耐受,具有极大临床应用前景和基础科研价值。本文述评了巨噬细胞分型、巨噬细胞与肾IRI、移植肾排斥反应及调节性巨噬细胞与免疫耐受的关系,并分析了其可能作用机制,以期诱导巨噬细胞亚型改变或清除特定亚型巨噬细胞,进而改善移植预后及移植肾远期存活。

     

  • [1] CHENG Q, ZHANG J, ZHENG T, et al. Editorial: innate immunity and renal transplantation[J]. Front Immunol, 2023, 14: 1206683. DOI: 10.3389/fimmu.2023.1206683.
    [2] SHI B, YING T, CHADBAN SJ. Survival after kidney transplantation compared with ongoing dialysis for people over 70 years of age: a matched-pair analysis[J]. Am J Transplant, 2023, DOI: 10.1016/j.ajt.2023.07.006 [Epub ahead of print
    [3] POGGIO ED, AUGUSTINE JJ, ARRIGAIN S, et al. Long-term kidney transplant graft survival-making progress when most needed[J]. Am J Transplant, 2021, 21(8): 2824-2832. DOI: 10.1111/ajt.16463.
    [4] HART A, SMITH JM, SKEANS MA, et al. OPTN/SRTR 2017 annual data report: kidney[J]. Am J Transplant, 2019, 19 (Suppl 2): 119-123. DOI: 10.1111/ajt.15274.
    [5] 魏健超, 何凯鸣, 孙启全. 2022年中国肾移植研究年度盘点[J]. 器官移植, 2023, 14(3): 336-342. DOI: 10.3969/j.issn.1674-7445.2023.03.003.

    WEI JC, HE KM, SUN QQ. Research highlights on kidney transplantation in 2022 from China[J]. Organ Transplant, 2023, 14(3): 336-342. DOI: 10.3969/j.issn.1674-7445.2023.03.003.
    [6] JAIN A, PASARE C. Innate control of adaptive immunity: beyond the three-signal paradigm[J]. J Immunol, 2017, 198(10): 3791-3800. DOI: 10.4049/jimmunol.1602000.
    [7] 任滌非, 廖涛, 苗芸. 巨噬细胞在移植后慢性排斥反应中的作用研究进展[J]. 器官移植, 2023, 14(3): 358-363. DOI: 10.3969/j.issn.1674-7445.2023.03.006.

    REN DF, LIAO T, MIAO Y. Research progress on the role of macrophages in post-transplantation chronic rejection[J]. Organ Transplant, 2023, 14(3): 358-363. DOI: 10.3969/j.issn.1674-7445.2023.03.006.
    [8] ORDIKHANI F, POTHULA V, SANCHEZ-TARJUELO R, et al. Macrophages in organ transplantation[J]. Front Immunol, 2020, 11: 582939. DOI: 10.3389/fimmu.2020.582939.
    [9] YANG S, ZHAO M, JIA S. Macrophage: key player in the pathogenesis of autoimmune diseases[J]. Front Immunol, 2023, 14: 1080310. DOI: 10.3389/fimmu.2023.1080310.
    [10] KOLLINIATI O, IERONYMAKI E, VERGADI E, et al. Metabolic regulation of macrophage activation[J]. J Innate Immun, 2022, 14(1): 51-68. DOI: 10.1159/000516780.
    [11] YADAV S, PRIYA A, BORADE DR, et al. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance[J]. Immunol Res, 2023, 71(2): 130-152. DOI: 10.1007/s12026-022-09330-8.
    [12] CHEN S, SAEED AFUH, LIU Q, et al. Macrophages in immunoregulation and therapeutics[J]. Signal Transduct Target Ther, 2023, 8(1): 207. DOI: 10.1038/s41392-023-01452-1.
    [13] 杨雅量, 葛星月, 李文武, 等. 巨噬细胞极化调控机制及在创面愈合中的作用和作用机制研究进展[J]. 山东医药, 2022, 62(30): 103-107.

    YANG YL, GE XY, LI WW, et al. Research progress on the regulation mechanism of macrophage polarization and its role in wound healing[J]. Shandong Med J, 2022, 62(30): 103-107.
    [14] PENG Y, ZHOU M, YANG H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023: 8821610. DOI: 10.1155/2023/8821610.
    [15] 李镇江, 李书俊, 周健, 等. 不同时期增生性瘢痕组织中巨噬细胞活化相关因子的研究[J]. 遵义医科大学学报, 2022, 45(1): 87-91. DOI: 10.14169/j.cnki.zunyixuebao.2022.0007.

    LI ZJ, LI SJ, ZHOU J, et al. The study on macrophage activation related factors in hypertrophic scar tissue at different periods[J]. J Zunyi Med Univ, 2022, 45(1): 87-91. DOI: 10.14169/j.cnki.zunyixuebao.2022.0007.
    [16] CHAMBERS M, REES A, CRONIN JG, et al. Macrophage plasticity in reproduction and environmental influences on their function[J]. Front Immunol, 2021, 11: 607328. DOI: 10.3389/fimmu.2020.607328.
    [17] RYSMAKHANOV M, SMAGULOV A, MUSSIN N, et al. Retrograde reperfusion of renal grafts to reduce ischemic-reperfusion injury[J]. Korean J Transplant, 2022, 36(4): 253-258. DOI: 10.4285/kjt.22.0053.
    [18] NIEUWENHUIJS-MOEKE GJ, PISCHKE SE, BERGER SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 2020, 9(1): 253. DOI: 10.3390/jcm9010253.
    [19] SOARES ROS, LOSADA DM, JORDANI MC, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies[J]. Int J Mol Sci, 2019, 20(20): 5034. DOI: 10.3390/ijms20205034.
    [20] ZHANG F, LI Y, WU J, et al. The role of extracellular traps in ischemia reperfusion injury[J]. Front Immunol, 2022, 13: 1022380. DOI: 10.3389/fimmu.2022.1022380.
    [21] TANG Q, DONG C, SUN Q. Immune response associated with ischemia and reperfusion injury during organ transplantation[J]. Inflamm Res, 2022, 71(12): 1463-1476. DOI: 10.1007/s00011-022-01651-6.
    [22] CHEN H, LIU N, ZHUANG S. Macrophages in renal injury, repair, fibrosis following acute kidney injury and targeted therapy[J]. Front Immunol, 2022, 13: 934299. DOI: 10.3389/fimmu.2022.934299.
    [23] HU Z, ZHAN J, PEI G, et al. Depletion of macrophages with clodronate liposomes partially attenuates renal fibrosis on AKI-CKD transition[J]. Ren Fail, 2023, 45(1): 2149412. DOI: 10.1080/0886022X.2022.2149412.
    [24] LI L, GAN H, JIN H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2021, 92:107335. DOI: 10.1016/j.intimp.2020.107335.
    [25] WANG N, NIE H, ZHANG Y, et al. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway[J]. Inflamm Res, 2022, 71(1):93-106. DOI: 10.1007/s00011-021-01515-5.
    [26] HANCOCK WW, THOMSON NM, ATKINS RC. Composition of interstitial cellular infiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts[J]. Transplantation, 1983, 35(5): 458-463. DOI: 10.1097/00007890-198305000-00013.
    [27] MUELLER FB, YANG H, LUBETZKY M, et al. Landscape of innate immune system transcriptome and acute T cell-mediated rejection of human kidney allografts[J]. JCI Insight, 2019, 4(13): e128014. DOI: 10.1172/jci.insight.128014.
    [28] ZHOU H, LU H, SUN L, et al. Diagnostic biomarkers and immune infiltration in patients with T cell-mediated rejection after kidney transplantation[J]. Front Immunol, 2022, 12: 774321. DOI: 10.3389/fimmu.2021.774321.
    [29] 张翔, 王子杰, 郑明, 等. M1型巨噬细胞极化在内皮细胞转分化及慢性移植肾失功中的作用[J]. 南京医科大学学报(自然科学版), 2021, 41(9): 1296-1303, 1309.

    ZHANG X, WANG ZJ, ZHENG M, et al. The role of M1 polarized - macrophage in endothelial -to - myofibroblast transition and chronic allograft dysfunction[J]. J Nanjing Med Univ(Nat Sci), 2021, 41(9): 1296-1303, 1309.
    [30] WILSON NA, DYLEWSKI J, DEGNER KR, et al. An in vitro model of antibody-mediated injury to glomerular endothelial cells: upregulation of MHC class II and adhesion molecules[J]. Transpl Immunol, 2020, 58: 101261. DOI: 10.1016/j.trim.2019.101261.
    [31] JOSE MD, IKEZUMI Y, VAN ROOIJEN N, et al. Macrophages act as effectors of tissue damage in acute renal allograft rejection[J]. Transplantation, 2003, 76(7): 1015-1022. DOI: 10.1097/01.TP.0000083507.67995.13.
    [32] BRONTE V, SERAFINI P, DE SANTO C, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice[J]. J Immunol, 2003, 170(1): 270-278. DOI: 10.4049/jimmunol.170.1.270.
    [33] CONDE P, RODRIGUEZ M, VAN DER TOUW W, et al. DC-SIGN(+) macrophages control the induction of transplantation tolerance[J]. Immunity, 2015, 42(6): 1143-1158. DOI: 10.1016/j.immuni.2015.05.009.
    [34] GAO C, WANG X, LU J, et al. Mesenchymal stem cells transfected with sFgl2 inhibit the acute rejection of heart transplantation in mice by regulating macrophage activation[J]. Stem Cell Res Ther, 2020, 11(1): 241. DOI: 10.1186/s13287-020-01752-1.
    [35] LACKNER K, EBNER S, WATSCHINGER K, et al. Multiple shades of gray-macrophages in acute allograft rejection[J]. Int J Mol Sci, 2023, 24(9): 8257. DOI: 10.3390/ijms24098257.
    [36] LIU B, JIANG Q, CHEN R, et al. Tacrolimus ameliorates bleomycin-induced pulmonary fibrosis by inhibiting M2 macrophage polarization via JAK2/STAT3 signaling[J]. Int Immunopharmacol, 2022, 113(Pt A):109424. DOI: 10.1016/j.intimp.2022.109424.
    [37] JIANG B, ZHANG Y, LI Y, et al. A tissue-tended mycophenolate-modified nanoparticle alleviates systemic lupus erythematosus in MRL/Lpr mouse model mainly by promoting local M2-like macrophagocytes polarization[J]. Int J Nanomedicine, 2022,17:3251-3267. DOI: 10.2147/IJN.S361400.
    [38] QU R, ZHOU M, QIU Y, et al. Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis[J]. Int Immunopharmacol, 2023, 120:110392. DOI: 10.1016/j.intimp.2023.110392.
    [39] VAN LOON E, GAZUT S, YAZDANI S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: a multicentre, prospective study[J]. EBioMedicine, 2019, 46: 463-472. DOI: 10.1016/j.ebiom.2019.07.028.
    [40] LI J, LI C, ZHUANG Q, et al. The evolving roles of macrophages in organ transplantation[J]. J Immunol Res, 2019: 5763430. DOI: 10.1155/2019/5763430.
    [41] JANIK MK, KRUK B, SZCZEPANKIEWICZ B, et al. Measurement of liver and spleen stiffness as complementary methods for assessment of liver fibrosis in autoimmune hepatitis[J]. Liver Int, 2021, 41(2): 348-356. DOI: 10.1111/liv.14726.
    [42] HELGESON ES, MANNON R, GRANDE J, et al. i-IFTA and chronic active T cell-mediated rejection: a tale of 2 (DeKAF) cohorts[J]. Am J Transplant, 2021, 21(5): 1866-1877. DOI: 10.1111/ajt.16352.
    [43] TOKI D, ZHANG W, HOR KL, et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation[J]. Am J Transplant, 2014, 14(9): 2126-2136. DOI: 10.1111/ajt.12803.
    [44] IKEZUMI Y, SUZUKI T, YAMADA T, et al. Alternatively activated macrophages in the pathogenesis of chronic kidney allograft injury[J]. Pediatr Nephrol, 2015, 30(6): 1007-1017. DOI: 10.1007/s00467-014-3023-0.
    [45] PANZER SE. Macrophages in transplantation: a matter of plasticity, polarization, and diversity[J]. Transplantation, 2022, 106(2): 257-267. DOI: 10.1097/TP.0000000000003804.
    [46] HUTCHINSON JA, RIQUELME P, SAWITZKI B, et al. Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients[J]. J Immunol, 2011, 187(5): 2072-2078. DOI: 10.4049/jimmunol.1100762.
    [47] SCALEA JR, TOMITA Y, LINDHOLM CR, et al. Transplantation tolerance induction: cell therapies and their mechanisms[J]. Front Immunol, 2016, 7: 87. DOI: 10.3389/fimmu.2016.00087.
    [48] RIQUELME P, TOMIUK S, KAMMLER A, et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients[J]. Mol Ther, 2013, 21(2): 409-422. DOI: 10.1038/mt.2012.168.
  • 加载中
图(1)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  145
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 录用日期:  2023-07-21
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回