Turn off MathJax
Article Contents
Ye Xiaoyong, Zhou Lin, He Qiang. Summary of basic research on liver transplantation in China of 2023[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024060
Citation: Ye Xiaoyong, Zhou Lin, He Qiang. Summary of basic research on liver transplantation in China of 2023[J]. ORGAN TRANSPLANTATION. doi: 10.3969/j.issn.1674-7445.2024060

Summary of basic research on liver transplantation in China of 2023

doi: 10.3969/j.issn.1674-7445.2024060
More Information
  • Corresponding author: He Qiang, Email: heqiang349@163.com
  • Received Date: 2024-01-30
    Available Online: 2024-03-25
  • Liver transplantation is the optimal treatment for end-stage liver disease and hepatocellular carcinoma, which can significantly improve clinical prognosis and quality of life of patients. However, multiple challenges, such as rejection, immune tolerance, shortage of donor liver, preservation of donor liver, ischemia-reperfusion injury and postoperative complications, etc., limit the efficacy of liver transplantation in clinical practice. Research teams in China have made significant contributions to the basic research related to liver transplantation by making continuous efforts and combining the development of emerging technologies, interdisciplinary integration and other emerging fields. In this article, the frontier progress in the basic research of liver transplantation in 2023 was reviewed, highlighting the progress made by Chinese research teams in the basic research of liver transplantation, aiming to provide reference for promoting the integration of Chinese characteristics into the research of liver transplantation, accelerate the integration of Chinese liver transplantation research with international community, and promote further advancement of liver transplantation in China.

     

  • loading
  • [1]
    MATHURIN P. Early liver transplantation for acute alcoholic hepatitis: we can't say no[J]. J Hepatol, 2021, 75(3): 718-722. DOI: 10.1016/j.jhep.2021.05.019.
    [2]
    HU X, CHEN R, WEI Q, et al. The landscape of alpha fetoprotein in hepatocellular carcinoma: where are we?[J]. Int J Biol Sci, 2022, 18(2): 536-551. DOI: 10.7150/ijbs.64537.
    [3]
    QUINTINI C, MUIESAN P, DETRY O, et al. Early allograft dysfunction and complications in DCD liver transplantation: expert consensus statements from the International Liver Transplantation Society[J]. Transplantation, 2021, 105(8): 1643-1652. DOI: 10.1097/TP.0000000000003877.
    [4]
    ABROL N, JADLOWIEC CC, TANER T. Revisiting the liver's role in transplant alloimmunity[J]. World J Gastroenterol, 2019, 25(25): 3123-3135. DOI: 10.3748/wjg.v25.i25.3123.
    [5]
    GUO B, ZHOU Q, CHEN J, et al. Orthotopic transplantation of functional bioengineered livers in rats[J]. ACS Biomater Sci Eng, 2023, 9(4): 1940-1951. DOI: 10.1021/acsbiomaterials.2c01213.
    [6]
    HEO SK, YU HM, KIM DK, et al. LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells[J]. PLoS One, 2023, 18(8): e0289798. DOI: 10.1371/journal.pone.0289798.
    [7]
    SUZUSHINO S, SATO N, ISHIGAME T, et sl. Tissue-engineered hepatocyte sheets supplemented with adipose-derived stem cells[J]. Tissue Eng Part A, 2023, 29(13/14): 384-396. DOI: 10.1089/ten.TEA.2022.0197.
    [8]
    XIANG W, WANG X, YU X, et al. Therapeutic efficiency of nasal mucosa-derived ectodermal mesenchymal stem cells in rats with acute hepatic failure[J]. Stem Cells Int, 2023: 6890299. DOI: 10.1155/2023/6890299.
    [9]
    MIRDAMADI ES, KHOSROWPOUR Z, JAFARI D, et al. 3D-printed PLA/Gel hybrid in liver tissue engineering: effects of architecture on biological functions[J]. Biotechnol Bioeng, 2023, 120(3): 836-851. DOI: 10.1002/bit.28301.
    [10]
    PENG S, LIANG W, LIU Z, et al. Hypothermic machine perfusion reduces donation after circulatory death liver ischemia-reperfusion injury through the SERPINA3-mediated PI3Kδ/Akt pathway[J]. Hum Cell, 2023,DOI: 10.1007/s13577-023-01012-3[Epub ahead of print].
    [11]
    BAI Y, SHI JH, LIU Q, et al. Charged multivesicular body protein 2B ameliorates biliary injury in the liver from donation after cardiac death rats via autophagy with air-oxygenated normothermic machine perfusion[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(5): 166686. DOI: 10.1016/j.bbadis.2023.166686.
    [12]
    HAUTZ T, SALCHER S, FODOR M, et al. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver[J]. Nat Commun, 2023, 14(1): 2285. DOI: 10.1038/s41467-023-37674-8.
    [13]
    CLARKE G, MAO J, FAN Y, et al. N-acetylcysteine: a novel approach to methaemoglobinaemia in normothermic liver machine perfusion[J]. Sci Rep, 2023, 13(1): 19022. DOI: 10.1038/s41598-023-45206-z.
    [14]
    LAU NS, LY M, DENNIS C, et al. Long-term ex situ normothermic perfusion of human split livers for more than 1 week[J]. Nat Commun, 2023, 14(1): 4755. DOI: 10.1038/s41467-023-40154-8.
    [15]
    SOUSA DA SILVA RX, BAUTISTA BORREGO L, LENGGENHAGER D, et al. Defatting of human livers during long-term ex situ normothermic perfusion: novel strategy to rescue discarded organs for transplantation[J]. Ann Surg, 2023, 278(5): 669-675. DOI: 10.1097/SLA.0000000000006047.
    [16]
    LIU Q, DEL PRETE L, ALI K, et al. Sequential hypothermic and normothermic perfusion preservation and transplantation of expanded criteria donor livers[J]. Surgery, 2023, 173(3): 846-854. DOI: 10.1016/j.surg.2022.07.035.
    [17]
    KIM J, ZIMMERMAN MA, SHIN WY, et al. Effects of subnormothermic regulated hepatic reperfusion on mitochondrial and transcriptomic profiles in a porcine model[J]. Ann Surg, 2023, 277(2): e366-e375. DOI: 10.1097/SLA.0000000000005156.
    [18]
    EDEN J, BREUER E, BIRRER D, et al. Screening for mitochondrial function before use-routine liver assessment during hypothermic oxygenated perfusion impacts liver utilization[J]. EBioMedicine, 2023, 98: 104857. DOI: 10.1016/j.ebiom.2023.104857.
    [19]
    COX DRA, LEE E, WONG BKL, et al. Graft-derived cfDNA monitoring in plasma and bile during normothermic machine perfusion in liver transplantation is feasible and a potential tool for assessing graft viability[J]. Transplantation, 2023,DOI: 10.1097/TP.0000000000004842[Epub ahead of print].
    [20]
    HOFMANN J, MESZAROS AT, BUCH ML, et al. Bioenergetic and cytokine profiling may help to rescue more DCD livers for transplantation[J]. Int J Mol Sci, 2023, 24(11): 9536. DOI: 10.3390/ijms24119536.
    [21]
    ZHANG B, HAN B, GAO F, et al. Fk506 inhibit liver regeneration in HOC model rat[J]. Transplant Proc, 2023, 55(3): 637-642. DOI: 10.1016/j.transproceed.2023.02.054.
    [22]
    MA J, YANG Z, HUANG Z, et al. Rngtt governs biliary-derived liver regeneration initiation by transcriptional regulation of mTORC1 and Dnmt1 in zebrafish[J]. Hepatology, 2023, 78(1): 167-178. DOI: 10.1097/HEP.0000000000000186.
    [23]
    ZHENG W, YANG L, JIANG S, et al. Role of Kupffer cells in tolerance induction after liver transplantation[J]. Front Cell Dev Biol, 2023, 11: 1179077. DOI: 10.3389/fcell.2023.1179077.
    [24]
    WANG J, MA Y, WANG J. miR-27a-5p inhibits acute rejection of liver transplantation in rats by inducing M2 polarization of Kupffer cells through the PI3K/Akt pathway[J]. Cytokine, 2023, 165: 156085. DOI: 10.1016/j.cyto.2022.156085.
    [25]
    ZHOU M, HUI J, GAO L, et al. Extracellular vesicles from bone marrow mesenchymal stem cells alleviate acute rejection injury after liver transplantation by carrying miR-22-3p and inducing M2 polarization of Kupffer cells[J]. J Gene Med, 2023, 25(7): e3497. DOI: 10.1002/jgm.3497.
    [26]
    SONG C, WANG G, MA X, et al. The effect of miR-155-5p on M1 polarization of Kupffer cells and immune response during liver transplantation through regulating the expression of KDM5D[J]. Mol Immunol, 2023, 155: 17-26. DOI: 10.1016/j.molimm.2023.01.003.
    [27]
    CAO ZR, ZHENG WX, JIANG YX, et al. miR-449a ameliorates acute rejection after liver transplantation via targeting procollagen-lysine1, 2-oxoglutarate5-dioxygenase 1 in macrophages[J]. Am J Transplant, 2023, 23(3): 336-352. DOI: 10.1016/j.ajt.2022.12.009.
    [28]
    TERRY AQ, KOJIMA H, SOSA RA, et al. Disulfide-HMGB1 signals through TLR4 and TLR9 to induce inflammatory macrophages capable of innate-adaptive crosstalk in human liver transplantation[J]. Am J Transplant, 2023, 23(12): 1858-1871. DOI: 10.1016/j.ajt.2023.08.002.
    [29]
    KOJIMA H, KADONO K, HIRAO H, et al. T cell CEACAM1-TIM-3 crosstalk alleviates liver transplant injury in mice and humans[J]. Gastroenterology, 2023, 165(5): 1233-1248. DOI: 10.1053/j.gastro.2023.07.004.
    [30]
    CUI B, CHEN XJ, SUN J, et al. Dendritic cells originating exosomal miR-193b-3p induces regulatory T cells to alleviate liver transplant rejection[J]. Int Immunopharmacol, 2023, 114: 109541. DOI: 10.1016/j.intimp.2022.109541.
    [31]
    FANG Y, BIAN C, LI Z, et al. ScRNA-seq revealed disruption in CD8+NKG2A+natural killer T cells in patients after liver transplantation and immunosuppressive therapy[J]. Immun Inflamm Dis, 2023, 11(9): e990. DOI: 10.1002/iid3.990.
    [32]
    SONG S, ZHI Y, TIAN G, et al. Immature and activated phenotype of blood NK cells is associated with acute rejection in adult liver transplant[J]. Liver Transpl, 2023, 29(8): 836-848. DOI: 10.1097/LVT.0000000000000139.
    [33]
    TRAN LM, MACEDO C, ZAHORCHAK AF, et al. Donor-derived regulatory dendritic cell infusion modulates effector CD8+T cell and NK cell responses after liver transplantation[J]. Sci Transl Med, 2023, 15(717): eadf4287. DOI: 10.1126/scitranslmed.adf4287.
    [34]
    CHEN Q, YANG Z, LIN H, et al. Comparative effects of hepatocyte growth factor and tacrolimus on acute liver allograft early tolerance[J]. Front Immunol, 2023, 14: 1162439. DOI: 10.3389/fimmu.2023.1162439.
    [35]
    WANG H, LI C, XIONG Z, et al. Luteolin attenuates acute liver allograft rejection in rats by inhibiting T cell proliferation and regulating T cell subsets[J]. Int Immunopharmacol, 2023, 121: 110407. DOI: 10.1016/j.intimp.2023.110407.
    [36]
    YOO HJ, YI Y, KANG Y, et al. Reduced ceramides are associated with acute rejection in liver transplant patients and skin graft and hepatocyte transplant mice, reducing tolerogenic dendritic cells[J]. Mol Cells, 2023, 46(11): 688-699. DOI: 10.14348/molcells.2023.0104.
    [37]
    TAJIMA T, HATA K, KUSAKABE J, et al. Anti-complement 5 antibody ameliorates antibody-mediated rejection after liver transplantation in rats[J]. Front Immunol, 2023, 14: 1186653. DOI: 10.3389/fimmu.2023.1186653.
    [38]
    CHENG P, LI Z, FU Z, et al. Small-for-size syndrome and graft inflow modulation techniques in liver transplantation[J]. Dig Dis, 2023, 41(2): 250-258. DOI: 10.1159/000525540.
    [39]
    ZHANG C, SHENG M, LV J, et al. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia-reperfusion[J]. Int Immunopharmacol, 2023, 124(Pt B): 111043. DOI: 10.1016/j.intimp.2023.111043.
    [40]
    XIAO X, CHEN S, HUANG Z, et al. SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice[J]. Br J Pharmacol, 2023, 180(24): 3234-3253. DOI: 10.1111/bph.16175.
    [41]
    LU D, YANG X, PAN L, et al. Dynamic immune cell profiling identified natural killer cell shift as the key event in early allograft dysfunction after liver transplantation[J]. Cell Prolif, 2023,DOI: 10.1111/cpr.13568[Epub ahead of print].
    [42]
    KULIK U, MOESTA C, SPANEL R, et al. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts[J]. Transl Res, 2024, 264: 33-65. DOI: 10.1016/j.trsl.2023.09.006.
    [43]
    SONG Z, HAN H, GE X, et al. Deficiency of neutrophil high-mobility group box-1 in liver transplant recipients exacerbates early allograft injury in mice[J]. Hepatology, 2023, 78(3): 771-786. DOI: 10.1097/HEP.0000000000000346.
    [44]
    ZHANG Y, WANG Z, ZHAO L, et al. Comprehensive evaluation of circRNAs in cirrhotic cardiomyopathy before and after liver transplantation[J]. Int Immunopharmacol, 2023, 114: 109495. DOI: 10.1016/j.intimp.2022.109495.
    [45]
    ZHANG Z, XU L, QIU X, et al. Fibroblast growth factor 21 (FGF21) attenuates tacrolimus-induced hepatic lipid accumulation through transcription factor EB (TFEB)-regulated lipophagy[J]. J Zhejiang Univ Sci B, 2023, 24(6): 485-495. DOI: 10.1631/jzus.B2200562.
    [46]
    CHEN LJ, XIN Y, YUAN MX, et al. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation[J]. Am J Physiol Cell Physiol, 2023, 325(3): C796-C806. DOI: 10.1152/ajpcell.00462.2022.
    [47]
    GUO Z, CHEN Q, LIU J, et al. Effects of CYP3A5 Genotypes on thrombocytopenia in liver transplantation patients treated with tacrolimus[J]. Biomedicines, 2023, 11(11): 3088. DOI: 10.3390/biomedicines11113088.
    [48]
    MOON JJ, HONG SK, KIM YC, et al. Soluble suppression of tumorigenicity 2 is a potential predictor of post-liver transplant renal outcomes[J]. PLoS One, 2023, 18(11): e0293844. DOI: 10.1371/journal.pone.0293844.
    [49]
    GHEITASI I, DOUSTIMOTLAGH AH, KOKHDAN EP, et al. Renoprotective effects of zinc sulfate against transient liver ischemia/reperfusion injury in rats[J]. Heliyon, 2023, 9(5): e15505. DOI: 10.1016/j.heliyon.2023.e15505.
    [50]
    SAEKI M, MUNESUE S, HIGASHI Y, et al. Assaying ADAMTS13 activity as a potential prognostic biomarker for sinusoidal obstruction syndrome in mice[J]. Int J Mol Sci, 2023, 24(22): 16328. DOI: 10.3390/ijms242216328.
    [51]
    GENG H, CHEN J, TU K, et al. Carbon dot nanozymes as free radicals scavengers for the management of hepatic ischemia-reperfusion injury by regulating the liver inflammatory network and inhibiting apoptosis[J]. J Nanobiotechnology, 2023, 21(1): 500. DOI: 10.1186/s12951-023-02234-1.
    [52]
    HUANG F, DENG Z, ZHANG Q, et al. Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury[J]. Transl Res, 2023, 262: 44-59. DOI: 10.1016/j.trsl.2023.07.008.
    [53]
    ZHOU S, RAO Z, XIA Y, et al. CCAAT/enhancer-binding protein homologous protein promotes ros-mediated liver ischemia and reperfusion injury by inhibiting mitophagy in hepatocytes[J]. Transplantation, 2023, 107(1): 129-139. DOI: 10.1097/TP.0000000000004244.
    [54]
    BAO Q, WANG Z, CHENG S, et al. Peptidomic analysis reveals that novel peptide LDP2 protects against hepatic ischemia/reperfusion injury[J]. J Clin Transl Hepatol, 2023, 11(2): 405-415. DOI: 10.14218/JCTH.2022.00094.
    [55]
    LI J, YU D, HE C, et al. KLF6 alleviates hepatic ischemia-reperfusion injury by inhibiting autophagy[J]. Cell Death Dis, 2023, 14(7): 393. DOI: 10.1038/s41419-023-05872-3.
    [56]
    ZHANG Y, WANG Z, JIA C, et al. Blockade of hepatocyte PCSK9 ameliorates hepatic ischemia-reperfusion injury by promoting pink1-parkin-mediated mitophagy[J]. Cell Mol Gastroenterol Hepatol, 2024, 17(1): 149-169. DOI: 10.1016/j.jcmgh.2023.09.004.
    [57]
    ZHU S, WANG X, CHEN H, et al. Hippo (YAP)-autophagy axis protects against hepatic ischemia-reperfusion injury through JNK signaling[J]. Chin Med J (Engl), 2023,DOI: 10.1097/CM9.0000000000002727[Epub ahead of print].
    [58]
    LI C, WU Y, CHEN K, et al. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis[J]. Cell Death Dis, 2023, 14(12): 810. DOI: 10.1038/s41419-023-06294-x.
    [59]
    TIAN X, WANG Y, YUAN M, et al. Heme Oxygenase-1-modified BMMSCs activate AMPK-Nrf2-FTH1 to reduce severe steatotic liver ischemia-reperfusion injury[J]. Dig Dis Sci, 2023, 68(11): 4196-4211. DOI: 10.1007/s10620-023-08102-0.
    [60]
    TIAN X, WU L, LI X, et al. Exosomes derived from bone marrow mesenchymal stem cells alleviate biliary ischemia reperfusion injury in fatty liver transplantation by inhibiting ferroptosis[J]. Mol Cell Biochem, 2023,DOI: 10.1007/s11010-023-04770-8[Epub ahead of print].
    [61]
    ZUO H, WANG Y, YUAN M, et al. Small extracellular vesicles from HO-1-modified bone marrow-derived mesenchymal stem cells attenuate ischemia-reperfusion injury after steatotic liver transplantation by suppressing ferroptosis via miR-214-3p[J]. Cell Signal, 2023, 109: 110793. DOI: 10.1016/j.cellsig.2023.110793.
    [62]
    TONG L, LIU R, YANG Y, et al. Ghrelin protects against ischemia/reperfusion-induced hepatic injury via inhibiting Caspase-11-mediated noncanonical pyroptosis[J]. Transpl Immunol, 2023, 80: 101888. DOI: 10.1016/j.trim.2023.101888.
    [63]
    WANG T, FANG Y, ZHANG X, et al. Heme oxygenase-1 alleviates ischemia-reperfusion injury by inhibiting hepatocyte pyroptosis after liver transplantation in rats[J]. Front Biosci (Landmark Ed), 2023, 28(10): 275. DOI: 10.31083/j.fbl2810275.
    [64]
    ZOU Z, SHANG R, ZHOU L, et al. The novel MyD88 inhibitor TJ-M2010-5 protects against hepatic ischemia-reperfusion injury by suppressing pyroptosis in mice[J]. Transplantation, 2023, 107(2): 392-404. DOI: 10.1097/TP.0000000000004317.
    [65]
    DERY KJ, KOJIMA H, KAGEYAMA S, et al. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans[J]. Sci Transl Med, 2023, 15(707): eadf2059. DOI: 10.1126/scitranslmed.adf2059.
    [66]
    HIRAO H, KOJIMA H, DERY KJ, et al. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation[J]. J Clin Invest, 2023, 133(3): e162940. DOI: 10.1172/JCI162940.
    [67]
    YAO Z, LIU N, LIN H, et al. Proanthocyanidin alleviates liver ischemia/reperfusion injury by suppressing autophagy and apoptosis via the PPARα/PGC1α signaling pathway[J]. J Clin Transl Hepatol, 2023, 11(6): 1329-1340. DOI: 10.14218/JCTH.2023.00071.
    [68]
    ZHANG Y, ZHAO X, CAO Y, et al. Bioactive indole alkaloid from Aspergillus amoenus TJ507 that ameliorates hepatic ischemia/reperfusion injury[J]. J Nat Prod, 2023, 86(8): 2059-2064. DOI: 10.1021/acs.jnatprod.3c00251.
    [69]
    ZHANG Y, WEI H, WANG M, et al. Dexmedetomidine alleviates ferroptosis following hepatic ischemia-reperfusion injury by upregulating Nrf2/GPx4-dependent antioxidant responses[J]. Biomed Pharmacother, 2023, 169: 115915. DOI: 10.1016/j.biopha.2023.115915.
    [70]
    ZHU C, SHI S, JIANG P, et al. Curcumin alleviates hepatic ischemia-reperfusion injury by inhibiting neutrophil extracellular traps formation[J]. J Invest Surg, 2023, 36(1): 2164813. DOI: 10.1080/08941939.2022.2164813.
    [71]
    PRESS AT, UNGELENK L, MEDYUKHINA A, et al. Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury[J]. Free Radic Biol Med, 2023, 204: 151-160. DOI: 10.1016/j.freeradbiomed.2023.04.012.
    [72]
    MAHMOUD HM, ELSAYED ABOUZED DE, ABO-YOUSSEF AM, et al. Zafirlukast protects against hepatic ischemia-reperfusion injury in rats via modulating Bcl-2/Bax and NF-κB/SMAD-4 pathways[J]. Int Immunopharmacol, 2023, 122: 110498. DOI: 10.1016/j.intimp.2023.110498.
    [73]
    GU L, ZHANG F, WU J, et al. Nanotechnology in drug delivery for liver fibrosis[J]. Front Mol Biosci, 2022, 8: 804396. DOI: 10.3389/fmolb.2021.804396.
    [74]
    WANG H, YANG R, WANG Z, et al. Metronomic capecitabine with rapamycin exerts an immunosuppressive effect by inducing ferroptosis of CD4+T cells after liver transplantation in rat[J]. Int Immunopharmacol, 2023, 124(Pt A): 110810. DOI: 10.1016/j.intimp.2023.110810.
    [75]
    LIU H, YEUNG WHO, PANG L, et al. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts[J]. JHEP Rep, 2023, 5(12): 100895. DOI: 10.1016/j.jhepr.2023.100895.
    [76]
    YE Q, ZHOU W, XU S, et al. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma[J]. MedComm (2020), 2023, 4(6): e439. DOI: 10.1002/mco2.439.
    [77]
    GUO F, YUAN X, CAO J, et al. RNA-Seq and immune repertoire analysis of normal and hepatocellular carcinoma relapse after liver transplantation[J]. Int J Gen Med, 2023, 16: 4329-4341. DOI: 10.2147/IJGM.S421016.
    [78]
    ZENG Q, CAO J, NIU Y, et al. Identification of recurrence-related mRNAs and noncoding RNAs in hepatocellular carcinoma following liver transplantation[J]. Turk J Gastroenterol, 2023, 34(4): 394-405. DOI: 10.5152/tjg.2023.22656.
    [79]
    JIANG Z, WEI Z, CHEN J, et al. BZW2, CDT1 and IVD act as biomarkers for predicting hepatocellular carcinoma[J]. Curr Cancer Drug Targets, 2023, 23(3): 211-221. DOI: 10.2174/1568009622666220901121641.
    [80]
    YANG Z, XIE H, WAN J, et al. A nanotherapeutic strategy that engages cytotoxic and immunosuppressive activities for the treatment of cancer recurrence following organ transplantation[J]. EBioMedicine, 2023, 92: 104594. DOI: 10.1016/j.ebiom.2023.104594.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (34) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return