Volume 14 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
Wei Hao, Yang Shujun, Wang Ke, et al. Research progress on the role of costimulatory signaling pathway in xenotransplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 810-816. doi: 10.3969/j.issn.1674-7445.2023152
Citation: Wei Hao, Yang Shujun, Wang Ke, et al. Research progress on the role of costimulatory signaling pathway in xenotransplantation[J]. ORGAN TRANSPLANTATION, 2023, 14(6): 810-816. doi: 10.3969/j.issn.1674-7445.2023152

Research progress on the role of costimulatory signaling pathway in xenotransplantation

doi: 10.3969/j.issn.1674-7445.2023152
More Information
  • Organ shortage is a critical factor limiting the development of organ transplantation. Xenotransplantation is expected to resolve the problem of organ shortage, which has become a new research hotspot. Study of costimulatory signaling pathway related to T cell regulation is a hot topic in terms of immunity of xenotransplantation. Since the discovery of costimulatory molecule CD28, multiple costimulatory molecules have been identified, including costimulatory and coinhibitory receptors and their related ligands. Specific T cell activation of donors is the key factor leading to acute immune rejection. The expression and induction of costimulatory molecules on T cells differ during different immune stages, and these costimulatory molecules play a key role in maintaining T cell tolerance and the balance of T cell immune response. At present, increasing attention has been diverted to the role of costimulatory signaling pathway in organ transplantation. In this article, the latest research progress in costimulatory signaling pathway related to xenotransplantation immunity was reviewed, aiming to provide reference for the optimization of xenotransplantation immunosuppression regimen.

     

  • loading
  • [1]
    CARRIER AN, VERMA A, MOHIUDDIN M, et al. Xenotransplantation: a new era[J]. Front Immunol, 2022, 13: 900594. DOI: 10.3389/fimmu.2022.900594.
    [2]
    RYCZEK N, HRYHOROWICZ M, ZEYLAND J, et al. CRISPR/Cas technology in pig-to-human xenotransplantation research[J]. Int J Mol Sci, 2021, 22(6): 3196. DOI: 10.3390/ijms22063196.
    [3]
    PARLAKPINAR H, GUNATA M. Transplantation and immunosuppression: a review of novel transplant-related immunosuppressant drugs[J]. Immunopharmacol Immunotoxicol, 2021, 43(6): 651-665. DOI: 10.1080/08923973.2021.1966033.
    [4]
    陶云霞, 石远凯. 霍奇金淋巴瘤免疫逃逸机制及其临床应用价值[J]. 中华肿瘤杂志, 2021, 43(9): 917-923. DOI: 10.3760/cma.j.cn112152-20200623-00591.

    TAO YX, SHI YK. Immune evasion mechanism and its clinical application value in Hodgkin's lymphoma[J]. Chin J Oncol, 2021, 43(9): 917-923. DOI: 10.3760/cma.j.cn112152-20200623-00591.
    [5]
    SCHRODER PM, SCHMITZ R, FITCH ZW, et al. Preoperative carfilzomib and lulizumab based desensitization prolongs graft survival in a sensitized non-human primate model[J]. Kidney Int, 2021, 99(1): 161-172. DOI: 10.1016/j.kint.2020.08.020.
    [6]
    LI XC, ROTHSTEIN DM, SAYEGH MH. Costimulatory pathways in transplantation: challenges and new developments[J]. Immunol Rev, 2009, 229(1): 271-293. DOI: 10.1111/j.1600-065X.2009.00781.x.
    [7]
    SINGH AK, GOERLICH CE, ZHANG T, et al. CD40-CD40L blockade: update on novel investigational therapeutics for transplantation[J]. Transplantation, 2023, 107(7): 1472-1481. DOI: 10.1097/TP.0000000000004469.
    [8]
    COOPER DKC, PIERSON RN 3RD. Milestones on the path to clinical pig organ xenotransplantation[J]. Am J Transplant, 2023, 23(3): 326-335. DOI: 10.1016/j.ajt.2022.12.023.
    [9]
    LA MURAGLIA GM 2ND, ZENG S, CRICHTON ES, et al. Superior inhibition of alloantibody responses with selective CD28 blockade is CTLA-4 dependent and T follicular helper cell specific[J]. Am J Transplant, 2021, 21(1): 73-86. DOI: 10.1111/ajt.16004.
    [10]
    ESENSTEN JH, HELOU YA, CHOPRA G, et al. CD28 costimulation: from mechanism to therapy[J]. Immunity, 2016, 44(5): 973-988. DOI: 10.1016/j.immuni.2016.04.020.
    [11]
    LIU D, KRUMMEY SM, BADELL IR, et al. 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses[J]. J Exp Med, 2014, 211(2): 297-311. DOI: 10.1084/jem.20130902.
    [12]
    POIRIER N, DILEK N, MARY C, et al. FR104, an antagonist anti-CD28 monovalent Fab' antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft[J]. Am J Transplant, 2015, 15(1): 88-100. DOI: 10.1111/ajt.12964.
    [13]
    POIRIER N, AZIMZADEH AM, ZHANG T, et al. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation[J]. Sci Transl Med, 2010, 2(17): 17ra10. DOI: 10.1126/scitranslmed.3000116.
    [14]
    MIURA Y, ISOGAI S, MAEDA S, et al. CTLA-4-Ig internalizes CD80 in fibroblast-like synoviocytes from chronic inflammatory arthritis mouse model[J]. Sci Rep, 2022, 12(1): 16363. DOI: 10.1038/s41598-022-20694-7.
    [15]
    KHAN M, AROOJ S, WANG H. Soluble B7-CD28 family inhibitory immune checkpoint proteins and anti-cancer immunotherapy[J]. Front Immunol, 2021, 12: 651634. DOI: 10.3389/fimmu.2021.651634.
    [16]
    HODGSON R, CHRISTIANSEN D, IERINO F, et al. Inducible co-stimulator (ICOS) in transplantation: a review[J]. Transplant Rev (Orlando), 2022, 36(4): 100713. DOI: 10.1016/j.trre.2022.100713.
    [17]
    XU X, DENNETT P, ZHANG J, et al. CTLA4 depletes T cell endogenous and trogocytosed B7 ligands via cis-endocytosis[J]. J Exp Med, 2023, 220(7): e20221391. DOI: 10.1084/jem.20221391.
    [18]
    WING K, ONISHI Y, PRIETO-MARTIN P, et al. CTLA-4 control over Foxp3+ regulatory T cell function[J]. Science, 2008, 322(5899): 271-275. DOI: 10.1126/science.1160062.
    [19]
    李涛, 张侃, 杨文雨, 等. 免疫检查点抑制剂CTLA-4在实体肿瘤治疗中的临床应用[J]. 协和医学杂志, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617.

    LI T, ZHANG K, YANG WY, et al. Clinical application of immune checkpoint inhibitors CTLA-4 in solid tumors[J]. Med J Peking Union Med College Hosp, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617.
    [20]
    NAKAYAMA Y, WATANABE R, YAMAMOTO W, et al. IL-6 inhibitors and JAK inhibitors as favourable treatment options for patients with anaemia and rheumatoid arthritis: ANSWER cohort study[J]. Rheumatology (Oxford), 2023, DOI: 10.1093/rheumatology/kead299[Epub ahead of print
    [21]
    AYAN G, RIBEIRO A, MACIT B, et al. Pharmacologic treatment strategies in psoriatic arthritis[J]. Clin Ther, 2023, 45(9): 826-840. DOI: 10.1016/j.clinthera.2023.05.010.
    [22]
    KIRK AD, HARLAN DM, ARMSTRONG NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates[J]. Proc Natl Acad Sci U S A, 1997, 94(16): 8789-8794. DOI: 10.1073/pnas.94.16.8789.
    [23]
    YAKUBU I, MOINUDDIN I, GUPTA G. Use of belatacept in kidney transplantation: what's new?[J]. Curr Opin Organ Transplant, 2023, 28(1): 36-45. DOI: 10.1097/MOT.0000000000001033.
    [24]
    HIGGINBOTHAM L, MATHEWS D, BREEDEN CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3): 221-230. DOI: 10.1111/xen.12166.
    [25]
    PHELPS CJ, BALL SF, VAUGHT TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6): 477-485. DOI: 10.1111/j.1399-3089.2009.00533.x.
    [26]
    DIMITRAKOPOULOS FD, KOTTOROU AE, ANTONACOPOULOU AG, et al. Expression of immune system-related membrane receptors CD40, RANK, BAFFR and LTβR is associated with clinical outcome of operated non-small-cell lung cancer patients[J]. J Clin Med, 2019, 8(5): 741. DOI: 10.3390/jcm8050741.
    [27]
    ZHANG T, PIERSON RN 3RD, AZIMZADEH AM. Update on CD40 and CD154 blockade in transplant models[J]. Immunotherapy, 2015, 7(8): 899-911. DOI: 10.2217/IMT.15.54.
    [28]
    CHAND DAKAL T, DHABHAI B, AGARWAL D, et al. Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders [J]. Immunobiology, 2020, 225(2): 15189. DOI: 10.1016/j.imbio.2019.151899.
    [29]
    VIAL G, GENSOUS N, DUFFAU P. The CD40-CD40L axis: current and future implications in clinical immunology [J]. Rev Med Interne, 2021, 42(10): 722-728. DOI: 110.1016/j.revmed.2021.02.005.
    [30]
    TANG T, CHENG X, TRUONG B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint [J]. Pharmacol Ther, 2021, 219: 107709. DOI: 10.1016/j.pharmthera.2020.107709.
    [31]
    PERRIN S, MAGILL M. The inhibition of CD40/CD154 costimulatory signaling in the prevention of renal transplant rejection in nonhuman primates: a systematic review and meta analysis[J]. Front Immunol, 2022, 13: 861471. DOI: 10.3389/fimmu.2022.861471.
    [32]
    ENELL SMITH K, DERONIC A, HÄGERBRAND K, et al. Rationale and clinical development of CD40 agonistic antibodies for cancer immunotherapy[J]. Expert Opin Biol Ther, 2021, 21(12): 1635-1646. DOI: 10.1080/14712598.2021.1934446.
    [33]
    TECTOR AJ, ADAMS AB, TECTOR M. Current status of renal xenotransplantation and next steps[J]. Kidney360, 2023, 4(2): 278-284. DOI: 10.34067/KID.0007152021.
    [34]
    BÜHLER L, AWWAD M, BASKER M, et al. High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response[J]. Transplantation, 2000, 69(11): 2296-2304. DOI: 10.1097/00007890-200006150-00013.
    [35]
    MOHIUDDIN MM, SINGH AK, CORCORAN PC, et al. Role of anti-CD40 antibody-mediated costimulation blockade on non-Gal antibody production and heterotopic cardiac xenograft survival in a GTKO. hCD46Tg pig-to-baboon model[J]. Xenotransplantation, 2014, 21(1): 35-45. DOI: 10.1111/xen.12066.
    [36]
    HANSEN-ESTRUCH C, BIKHET MH, JAVED M, et al. Renin-angiotensin-aldosterone system function in the pig-to-baboon kidney xenotransplantation model[J]. Am J Transplant, 2023, 23(3): 353-365. DOI: 10.1016/j.ajt.2022.11.022.
    [37]
    OURA T, HOTTA K, LEI J, et al. Immunosuppression with CD40 costimulatory blockade plus rapamycin for simultaneous islet-kidney transplantation in nonhuman primates[J]. Am J Transplant, 2017, 17(3): 646-656. DOI: 10.1111/ajt.13999.
    [38]
    KIM J, CHOI SH, LEE HJ, et al. Comparative efficacy of anti-CD40 antibody-mediated costimulation blockade on long-term survival of full-thickness porcine corneal grafts in nonhuman primates[J]. Am J Transplant, 2018, 18(9): 2330-2341. DOI: 10.1111/ajt.14913.
    [39]
    杨树军, 卫浩, 许勇, 等. 六基因编辑猪-食蟹猴异种肾移植围手术期监测初步报道[J]. 器官移植, 2023, 14(4): 521-528. DOI: 10.3969/j.issn.1674-7445.2023.04.008.

    YANG SJ, WEI H, XU Y, et al. Preliminary report of perioperative monitoring of six-gene-edited pig-to-cynomolgus monkey kidney xenotransplantation[J]. Organ Transplant, 2023, 14(4): 521-528. DOI: 10.3969/j.issn.1674-7445.2023.04.008.
    [40]
    MIURA S, HABIBABADY ZA, POLLOK F, et al. TNX-1500, a crystallizable fragment-modified anti-CD154 antibody, prolongs nonhuman primate cardiac allograft survival[J]. Am J Transplant, 2023, 23(8): 1182-1193. DOI: 10.1016/j.ajt.2023.03.025.
    [41]
    HAWTHORNE WJ, SALVARIS EJ, CHEW YV, et al. Xenotransplantation of genetically modified neonatal pig islets cures diabetes in baboons[J]. Front Immunol, 2022, 13: 898948. DOI: 10.3389/fimmu.2022.898948.
    [42]
    LÄNGIN M, MAYR T, REICHART B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation[J]. Nature, 2018, 564(7736): 430-433. DOI: 10.1038/s41586-018-0765-z.
    [43]
    IWASE H, JAGDALE A, YAMAMOTO T, et al. Evidence suggesting that deletion of expression of N-glycolylneuraminic acid (Neu5Gc) in the organ-source pig is associated with increased antibody-mediated rejection of kidney transplants in baboons[J]. Xenotransplantation, 2021, 28(4): e12700. DOI: 10.1111/xen.12700.
    [44]
    COOPER DKC, FOOTE JB, JAVED M, et al. Initial evidence that blockade of the CD40/CD154 costimulation pathway alone is sufficient as maintenance therapy in xenotransplantation[J]. Xenotransplantation, 2021, 28(6): e12721. DOI: 10.1111/xen.12721.
    [45]
    COGNASSE F, DUCHEZ AC, AUDOUX E, et al. Platelets as key factors in inflammation: focus on CD40L/CD40[J]. Front Immunol, 2022, 13: 825892. DOI: 10.3389/fimmu.2022.825892.
    [46]
    HASSAN GS, SALTI S, MOURAD W. Novel functions of integrins as receptors of CD154: their role in inflammation and apoptosis [J]. Cells, 2022, 11(11): 1747. DOI: 10.3390/cells11111747.
    [47]
    SCHULER W, BIGAUD M, BRINKMANN V, et al. Efficacy and safety of ABI793, a novel human anti-human CD154 monoclonal antibody, in cynomolgus monkey renal allotransplantation[J]. Transplantation, 2004, 77(5): 717-726. DOI: 10.1097/01.tp.0000116563.72763.83.
    [48]
    ROBLES-CARRILLO L, MEYER T, HATFIELD M, et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice[J]. J Immunol, 2010, 185(3): 1577-1583. DOI: 10.4049/jimmunol.0903888.
    [49]
    BARRILE R, VAN DER MEER AD, PARK H, et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems [J]. Clin Pharmacol Ther, 2018, 104(6): 1240-1248. DOI: 10.1002/cpt.1054.
    [50]
    LASSITER G, OTSUKA R, HIROSE T, et al. TNX-1500, a crystallizable fragment-modified anti-CD154 antibody, prolongs nonhuman primate renal allograft survival[J]. Am J Transplant, 2023, 23(8): 1171-1181. DOI: 10.1016/j.ajt.2023.03.022.
    [51]
    FIRL DJ, LASSITER G, HIROSE T, et al. Clinical and molecular correlation defines activity of physiological pathways in life-sustaining kidney xenotransplantation[J]. Nat Commun, 2023, 14(1): 3022. DOI: 10.1038/s41467-023-38465-x.
    [52]
    ADAMS AB, LOVASIK BP, FABER DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation[J]. Ann Surg, 2021, 274(3): 473-480. DOI: 10.1097/SLA.0000000000004996.
    [53]
    GRIFFITH BP, GOERLICH CE, SINGH AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. N Engl J Med, 2022, 387(1): 35-44. DOI: 10.1056/NEJMoa2201422.
    [54]
    PORRETT PM, ORANDI BJ, KUMAR V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4): 1037-1053. DOI: 10.1111/ajt.16930.
    [55]
    MONTGOMERY RA, STERN JM, LONZE BE, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20): 1889-1898. DOI: 10.1056/NEJMoa2120238.
    [56]
    LOCKE JE, KUMAR V, ANDERSON D, et al. Normal graft function after pig-to-human kidney xenotransplant[J]. JAMA Surg, 2023, 158(10): 1106-1108. DOI: 10.1001/jamasurg.2023.2774.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (258) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return